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Preface to the Fourth Edition

Group Theory is a vast subject and, in this Introduction (as well as in the
earlier editions), I have tried to select important and representative theorems
and to organize them in a coherent way. Proofs must be clear, and examples
should illustrate theorems and also explain the presence of restrictive hypo-
theses. I also believe that some history should be given so that one can
understand the origin of problems and the context in which the subject
developed.

Just as each of the earlier editions differs from the previous one in a signifi-
cant way, the present (fourth) edition is genuinely different from the third.
Indeed, this is already apparent in the Table of Contents. The book now
begins with the unique factorization of permutations into disjoint cycles and
the parity of permutations; only then is the idea of group introduced. This is
consistent with the history of Group Theory, for these first results on permu-
tations can be found in an 1815 paper by Cauchy, whereas groups of permu-
tations were not introduced until 1831 (by Galois). But even if history were
otherwise, I feel that it is usually good pedagogy to introduce a general
notion only after becoming comfortable with an important special case. I
have also added several new sections, and I have subtracted the chapter on
Homological Algebra (although the section on Hom functors and character
groups has been retained) and the section on Grothendieck groups.

The format of the book has been changed a bit: almost all exercises now
occur at ends of sections, so as not to interrupt the exposition. There are
several notational changes from earlier editions: I now write H < G instead
of H = G to denote “H is a subgroup of G”; the dihedral group of order
2n is now denoted by D,, instead of by D,; the trivial group is denoted by 1
instead of by {1}; in the discussion of simple linear groups, I now distinguish
elementary transvections from more general transvections; I speak of the
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fundamental group of an abstract simplicial complex instead of its edgepath
group.

Here is a list of some other changes from earlier editions.

Chapter 3. The cycle index of a permutation group is given to facilitate use
of Burnside’s counting lemma in coloring problems; a brief account of mo-
tions in the plane introduces bilinear forms and symmetry groups; the affine
group is introduced, and it is shown how affine invariants can be used to
prove theorems in plane geometry.

Chapter 4. The number of subgroups of order p* in a finite group is counted
mod p; two proofs of the Sylow theorems are given, one due to Wielandt.

Chapter 5. Assuming Burnside’s p®q” theorem, we prove P. Hall’s theorem
that groups having p-complements are solvable; we give Ornstein’s proof
of Schur’s theorem that G/Z(G) finite implies G’ finite.

Chapter 6. There are several proofs of the basis theorem, one due to
Schenkman,; there is a new section on operator groups.

Chapter 7. An explicit formula is given for every outer automorphism of
Se; stabilizers of normal series are shown to be nilpotent; the discussion of
the wreath product has been expanded, and it is motivated by computing the
automorphism group of a certain graph; the theorem of Gaschiitz on comple-
ments of normal p-subgroups is proved; a second proof of Schur’s theorem
on finiteness of G’ is given, using the transfer; there is a section on projective
representations, the Schur multiplier (as a cohomology group), and covers;
there is a section on derivations and H?, and derivations are used to give
another proof (due to Gruenberg and Wehrfritz) of the Schur—Zassenhaus
lemma. (Had I written a new chapter entitled Cohomology of Groups, I
would have felt obliged to discuss more homological algebra than is appro-
priate here.)

Chapter 8. There is a new section on the classical groups.

Chapter 9. An imbedding of S into the Mathieu group M,, is used to
construct an outer automorphism of Sg.

Chapter 10. Finitely generated abelian groups are treated before divisible
groups.

Chapter 11. There is a section on coset enumeration; the Schur multiplier
is shown to be a homology group via Hopf’s formula; the number of genera-
tors of the Schur multiplier is bounded in terms of presentations; universal
central extensions of perfect groups are constructed; the proof of Britton’s
lemma has been redone, after Schupp, so that it is now derived from the
normal form theorem for amalgams.

Chapter 12. Cancellation diagrams are presented before giving the difficult
portion of the proof of the undecidability of the word problem.

In addition to my continuing gratitude to those who helped with the first
three editions, I thank Karl Gruenberg, Bruce Reznick, Derek Robinson,

Paul Schupp, Armond Spencer, John Walter, and Paul Gies for their help on
this volume.

Urbana, Illinois Joseph J. Rotman
1994



From Preface to the Third Edition

Quand j’ai voulu me restreindre, je suis tombé dans I'obscurité;
jai préféré passer pour un peu bavard.

i H. POINCARE, Analysis situs,
Journal de I'Ecole Polytechnique, 1895, pp. 1-121.

Although permutations had been studied earlier, the theory of groups really
began with Galois (1811-1832) who demonstrated that polynomials are best
understood by examining certain groups of permutations of their roots. Since
that time, groups have arisen in almost every branch of mathematics. Even in
this introductory text we shall see connections with number theory, combina-
torics, geometry, topology, and logic.

By the end of the nineteenth century, there were two main streams of group
theory: topological groups (especially Lie groups) and finite groups. In this
century, a third stream has joined the other two: infinite (discrete) groups.
It is customary, nowadays, to approach our subject by two paths: “pure”
group theory (for want of a better name) and representation theory. This
book is an introduction to “pure” (discrete) group theory, both finite and
infinite.

We assume that the reader knows the rudiments of modern algebra, by
which we mean that matrices and finite-dimensional vector spaces are
friends, while groups, rings, fields, and their homomorphisms are only ac-
quaintances. A familiarity with elementary set theory is also assumed, but
some appendices are at the back of the book so that readers may see whether
my notation agrees with theirs.

I am fortunate in having attended lectures on group theory given by I
Kaplansky, S. Mac Lane, and M. Suzuki. Their influence is evident through-
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out in many elegant ideas and proofs. I am happy to thank once again those
who helped me (directly and indirectly) with the first two editions: K.I. Appel,
M. Barr, W.W. Boone, J.L. Britton, G. Brown, D. Collins, C. Jockusch,
T. McLaughlin, C.F. Miller, III. H. Paley, P. Schupp, F.D. Veldkamp, and
C.R.B. Wright. It is a pleasure to thank the following who helped with the
present edition: K.I. Appel, W.W. Boone, E.C. Dade, F. Haimo, L. McCulloh,
P.M. Neumann, E. Rips, A. Spencer, and J. Walter. I particularly thank
F. Hoffman, who read my manuscript, for his valuable comments and
suggestions.

Addendum to Second Corrected Printing
Many mistakes in the first printing have been corrected in this new printing.
I thank those readers, especially Hung-jen Hsu, Dae Hyun Paek, and Jack

Shamash, who brought them to my attention.

February, 1999 Joseph Rotman
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To the Reader

Exercises in a text generally have two functions: to reinforce the reader’s
grasp of the material and to provide puzzles whose solutions give a certain
pleasure. Here, the exercises have a third function: to enable the reader to
discover important facts, examples, and counterexamples. The serious reader
should attempt all the exercises (many are not difficult), for subsequent proofs
may depend on them; the casual reader should regard the exercises as part of
the text proper.



CHAPTER 1

Groups and Homomorphisms

Generalizations of the quadratic formula for cubic and quartic polynomials
were discovered in the sixteenth century, and one of the major mathematical
problems thereafter was to find analogous formulas for the roots of polyno-
mials of higher degree; all attempts failed. By the middle of the eighteenth
century, it was realized that permutations of the roots of a polynomial f(x)
were important; for example, it was known that the coefficients of f(x) are
“symmetric functions” of its roots. In 1770, J.-L. Lagrange used permutations
to analyze the formulas giving the roots of cubics and quartics,’ but he
could not fully develop this insight because he viewed permutations only as
rearrangements, and not as bijections that can be composed (see below).
Composition of permutations does appear in work of P. Ruffini and of P.
Abbati about 1800; in 1815, A.L. Cauchy established the calculus of permuta-
tions, and this viewpoint was used by N.H. Abel in his proof (1824) that there
exist quintic polynomials for which there is no generalization of the qua-

1 One says that a polynomial (or a rational function) f of u variables is r-valued if, by permuting
the variables in all possible ways, one obtains exactly r distinct polynomials. For exam-
ple, f(xy, X3, X3) = X; + X, + X3 is a 1-valued function, while g(x;, X,, X3) = X, %, + X3 is a
3-valued function.

To each polynomial f(x) of degree u, Lagrange associated a polynomial, called its resolvent,
and a rational function of y variables. We quote Wussing (1984, English translation, p. 78): “This
connection between the degree of the resolvent and the number of values of a rational function
leads Lagrange ... to consider the number of values that can be taken on by a rational
function of u variables. His conclusion is that the number in question is always a divisor of
u!. ... Lagrange saw the ‘metaphysics’ of the procedures for the solution of algebraic equations
by radicals in this connection between the degree of the resolvent and the valuedness of rational
functions. His discovery was the starting point of the subsequent development due to Ruffini,
Abel, Cauchy, and Galois.... It is remarkable to see in Lagrange’s work the germ, in admittedly
rudimentary form, of the group concept.” (See Examples 3.3 and 3.3’ as well as Exercise 3.38.)
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dratic formula. In 1830, E. Galois (only 19 years old at the time) invented
groups, associated to each polynomial a group of permutations of its roots,
and proved that there is a formula for the roots if and only if the group of
permutations has a special property. In one great theorem, Galois founded
group theory and used it to solve one of the outstanding problems of his day.

Permutations

Definition. If X is a nonempty set, a permutation of X is a bijection a: X — X.
We denote the set of all permutations of X by Sy.

In the important special case when X = {1, 2, ..., n}, we write S, instead of
Sy. Note that |S,| = n!, where | Y| denotes the number of elements in a set Y.

In Lagrange’s day, a permutation of X = {1,2,..., n} was viewed as a
rearrangement; that is, as a list ij,i,,...,i, with no repetitions of all
the elements of X. Given a rearrangement iy, i,, ..., i,, define a function
a: X — X by a(j) = i; for all j € X. This function « is an injection because the
list has no repetitions; it is a surjection because all of the elements of X
appear on the list. Thus, every rearrangement gives a bijection. Conversely,
any bijection a can be denoted by two rows:

oy 1 2 ... n
"\l @2 ... an)’

and the bottom row is a rearrangement of {1, 2,...,n}. Thus, the two
versions of permutation, rearrangement and bijection, are equivalent. The
advantage of the new viewpoint is that two permutations in Sy can be
“multiplied,” for the composite of two bijections is again a bijection. For

123 123
example, a = < ) and f = ( ) are permutations of {1, 2, 3}. The

321 231
. (123 . .
product af is 213 ; we compute this product? by first applying f and
then a:

af(1) = a(B(1)) = a(2) = 2,
2f(2) = a(B(2)) = a(3) =1,
aB(3) = a(f(3)) = a(l) = 3.

123
Note that fa = <1 3 2>, so that aff # fo.

> We warn the reader that some authors compute this product in the reverse order: first « and

then B. These authors will write functions on the right: instead of f(x), they write (x)f (see
footnote 4 in this chapter).



Cycles

EXERCISES

L1.1. The identity function 1, on a set X is a permutation, and we usually denote it by
1. Prove that 1a = a = «1 for every permutation « € Sy.

1.2. For each a € Sy, prove that there is f € Sy with «f = 1 = Ba (Hint. Let f be the
inverse function of the bijection «).

1.3. For all a, f, y € Sy, prove that a(fy) = («B)y. Indeed, if X, Y, Z, W are sets and
f:X->Y,9:Y—>Z,and h: Z - W are functions, then h(gf) = (hg)f. (Hint: Recall
that two functions f, g: 4 — B are equal if and only if, for all a € A, one has

fla) = g(a))

Cycles

The two-rowed notation for permutations is not only cumbersome but, as we

shall see, it also disguises important features of special permutations. There-
fore, we shall introduce a better notation.

Definition. If x € X and o € Sy, then « fixes x if a(x) = x and « moves x if
o(x) # x.

Definition. Let i, i,, ..., i, be distinct integers between 1 and n. If a € S, fixes
the remaining n — r integers and if

a(il) = i2’ a(iz) = i3’ RS a(ir—l) = ir’ a(ir) = il’

then « is an r-cycle; one also says that « is a cycle of length r. Denote a by
(y iy o i)

Every 1-cycle fixes every element of X, and so all 1-cycles are equal to the
identity. A 2-cycle, which merely interchanges a pair of elements, is called a
transposition.

Draw a circle with ij,é,...,i, arranged at equal distances around the
circumference; one may picture the r-cycle a = (iy i --- ;) as a rotation
taking i, into i,, i, into iy, etc,, and i, into i,. Indeed, this is the origin of the
term cycle, from the Greek word ktkoo for circle; see Figure 1.1.

Here are some examples:

123 4 ,
(2 3 4 1>=(1234)’
(1 2 3 4 5)=(15342);
51 4 2 3
1 2 3 4 5
= =123-
(2 22 5) 12 3)@©) =023
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QU'UNE FONCTION PEUT ACQUERIR, ETC. 79

-‘\s A
> formée
A

PV,

Nous observerons d'abord que, si dans la substitution <

par deux permutations prises i volonté dans la suite
A Ay Ay s Ay

les deux termes A,, A, renferment des indices correspondants qui&oient
respectivement égaux, on pourra, sans inconvénient, supprimer les
mémes indices pour ne conserver que ceux des indices correspondants
(qui sont respectivement inégaux. Ainsi, par exemple, si l'on fait n=>5,
les deux substitutions

1.2.3.4.5 / 1.2.3
et )
2.3.1.4.5 2.3.1
seront équivalentes entre elles. Je dirai qu'une substitution aura été
réduite 2 sa plus simple expression lorsqu’on aura supprimé, dans les
deux termes, tous les indices correspondants égaux.

Soient maintenant a, B, v, ..., ¢, n plusicurs des indices 1, 2,3, ..., n

s

en nombre égal & p, et supposons que la substitution < > réduite a

A
sa plus simple expression prenne la forme

< «a By ... ¢ )
)
By o ...on ay
en sorte que, pour déduire le second terme du premier, il suffise de

ranger en cercle, ou plutdt en polygone régulier, les indices «, 8, v,
\ . .
%, ..., ¢, n de la maniére suivante :

et de rémplacer ensuite chaque indice par celui qui, le premicer, vient
prendre sa place lorsqu’on fait tourner d’orient en oceident le polygone

A. Cauchy, Mémoire sur le nombre des valeurs qu'une fonction peut acquérir,
lorsqu’on y permute de toutes les maniéres possibles les quantités qu'elle renferme, J.
de I'Ecole Poly XVII Cahier, tome X (1815), pp. 1-28.

From: Oeuvres Completes d’Augustin Cauchy, 11 Serie, Tome I, Gauthier-Villars,
Paris, 1905.

Figure 1.1



Cycles

Multiplication is easy when one uses the cycle notation. For example, let
us compute y = aff, where « = (1 2) and f=(1 3 4 2 5). Since multiplica-
tion is composition of functions, y(1) = « o (1) = a(B(1)) = «(3) = 3; Next,
?(3) = a(B(3)) = «(4) = 4, and y(4) = a(B(4)) = «(2) = 1. Having returned to
1, we now seek y(2), because 2 is the smallest integer for which y has not yet
been evaluated. We end up with

12(13429%5=(1 342 )53).

The cycles on the right are disjoint as defined below.

Definition. Two permutations o, f € Sy are disjoint if every x moved by one is
fixed by the other. In symbols, if a(x) # x, then B(x) = x and if f(y) # y, then
a(y) = y (of course, it is possible that there is z € X with a(z) = z = f(z)). A
family of permutations a,, a5, ..., a,, is disjoint if each pair of them is disjoint.

EXERCISES

(r1---r—1). Conclude that there are exactly r such notations for this r-cycle.
1.5. If 1 < r < n, then there are (1/r)[n(n — 1)...(n — r + 1)] r-cycles in S,

14. Prove that 1 2---r—17r) = 23-r1) = 3412 = - =

1.6. Prove the cancellation law for permutations: if either af = ay or Ba = ya, then

B=1.

1.7. Leto = (iy i, -*- i,)and B = (j, j, - Jj,). Prove that « and § are disjoint if and
only if {il’ i29 LR lr} N {jl’jZ’ "~’js} = g

1.8. If « and B are disjoint permutations, then aff = fa; that is, « and f commute.
1.9. If a, B € S, are disjoint and af = 1, thena =1 = .

1.10. If a, B € S, are disjoint, prove that (xf)* = o*B* for all k > 0. Is this true if « and
B are not disjoint? (Define «® = 1, a! = «, and, if k > 2, define «* to be the
composite of a with itself k times.)

1.11. Show that a power of a cycle need not be a cycle.

1.12. (i) Leta = (ip iy ... i,;) be an r-cycle. For every j, k > 0, prove that a*(i;) =
ir+; if subscripts are read modulo r.
(ii) Prove that if « is an r-cycle, then «” = 1, but that ok # 1 for every positive
integer k <r.
(iii) If ¢ = By B, ... B, is a product of disjoint r,-cycles f;, then the smallest posi-
tive integer [ with a' = 1 is the least common multiple of {r,, 7, ..., 7}

1.13. (i) A permutation a € S, is regular if either a has no fixed points and it is the
product of disjoint cycles of the same length or a = 1. Prove that a is
regular if and only if a is a power of an n-cycle §; that is, « = ™ for
some m. (Hint: if « = (a,a,...a,)(byb,...b)...(212;... ), where there are
mletters a, b, ..., z, then let f = (a by ...z1a3b,...25...aby... 2;)))

(i) If « is an n-cycle, then o* is a product of (n, k) disjoint cycles, each of length
n/(n, k). (Recall that (n, k) denotes the ged of n and k.)
(iii) If p is a prime, then every power of a p-cycle is either a p-cycle or 1.
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1.14. (i) Let a = By in S,, where p and y are disjoint. If § moves i, then a*(i) = B*(i)
for all k > 0.
(ii) Let o« and B be cycles in S, (we do not assume that they have the same
length). If there is i; moved by both a and § and if a*(i,) = B*(i,) for all
positive integers k, then o = p.

Factorization into Disjoint Cycles

123456789

641253897
Now a(1) = 6, and so « begins (1 6; as «(6) = 3, « continues (1 6 3; since
a(3) = 1, the parentheses close, and « begins (1 6 3). The smallest integer not
having appeared is 2; write (1 6 3)(2, and then (1 6 3)(2 4; continuing in
this way, we ultimately arrive at the factorization (which is a product of
disjoint cycles)

Let us factor a = < ) into a product of disjoint cycles.

a= (16 3)2 4(5)(7 89).

Theorem 1.1. Every permutation o € S, is either a cycle or a product of disjoint
cycles.

Proof. The proof is by induction on the number k of points moved by a. The
base step k = 0 is true, for then « is the identity, which is a 1-cycle. If k > 0,
let i; be a point moved by a. Define i, = a(i,), iy = a(iz), ..., i+ = (i),
where r is the smallest integer for which i,; € {i, i,, i3, ..., i,} (the list i, i,,
i3, ..., I, ... cannot go on forever without a repetition because there are only
n possible values). We claim that «(i,) = i;. Otherwise, a(i,) = i; for some
Jj = 2; but a(i;—;) = i;, and this contradicts the hypothesis that « is an injec-
tion. Let ¢ be the r-cycle (i; i, i3 *** i,). If r = n, then « is the cycle o. If
r < nand Y consists of the remaining n — r points, then a(Y) = Y and o fixes
the points in Y. Now o|{i,, i5, ..., i,} = «|{iy, i, ..., i,}. If &' is the permuta-
tion with a’'| Y = «|Y and which fixes {i, i,, ..., i,}, then ¢ and &’ are disjoint
and a = oo’. Since a’ moves fewer points than does «, the inductive hypothe-
sis shows that o, and hence o, is a product of disjoint cycles. W

One often suppresses all 1-cycles, if any, from this factorization of «, for
1-cycles equal the identity permutation. On the other hand, it is sometimes
convenient to display all of them.

Definition. A complete factorization of a permutation « is a factorization of «
as a product of disjoint cycles which contains one 1-cycle (i) for every i fixed
by a.

In a complete factorization of a permutation «, every i between 1 and n
occurs in exactly one of the cycles.
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Theorem 1.2. Let a€ S, and let oo = B, ..., be a complete factorization into
disjoint cycles. This factorization is unique except for the order in which the
factors occur.

Proof. Disjoint cycles commute, by Exercise 1.8, so that the order of the
factors in a complete factorization is not uniquely determined; however, we
shall see that the factors themselves are uniquely determined. Since there is
exactly one 1-cycle (i) for every i fixed by a, it suffices to prove uniqueness of
the cycles of length at least 2. Suppose a = y,...7 is a second complete
factorization into disjoint cycles. If §, moves i,, then B¥(i,) = a*(i,) for all k,
by Exercise 1.14(i). Now some y; must move i,; since disjoint cycles commute,
we may assume that y, = y,. But pf(i;) = «*(i,) for all k, and so Exercise
1.14(ii) gives B, = 7,. The cancellation law, Exercise 1.6, gives f;...f,_, =
9; ...%s—1, and the proof is completed by an induction on max{s, t}. W

EXERCISES

1.15. Let a be the permutation of {1, 2, ..., 9} defined by a(i) = 10 — i. Write « as a
product of disjoint cycles.

1.16. Let p be a prime and let a € S,. If a? = 1, then either « = 1, a is a p-cycle, or o is
a product of disjoint p-cycles. In particular, if a> = 1, then either a = 1, ¢ is a
transposition, or a is a product of disjoint transpositions.

1.17. How many o € S, are there with «? = 1? (Hint. (i j)=(j i) and (i j)(k ]) =
(k DG j))

1.18. Give an example of permutations a, f§, and y in S5 with « commuting with S,
with f commuting with 7, but with « not commuting with y.

Even and Odd Permutations
There is another factorization of permutations that is useful.
Theorem 1.3. Every permutation o € S, is a product of transpositions.

Proof. By Theorem 1.1, it suffices to factor cycles, and

A2..n=1nAlr—1...(12. m

Every permutation can thus be realized as a sequence of interchanges.
Such a factorization is not as nice as the factorization into disjoint cycles.
First of all, the transpositions occurring need not commute: (1 3)(1 2) =
(1 2 3)and (1 2)(1 3)=(1 3 2); second, neither the factors nor the number
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of factors are uniquely determined; for example,
123=(013)12=2 31 3
=(1 3)(4 2)(1 2)(1 4)
=(1 3)@ 2)(1 2)(1 4)(2 3)(2 3).
Is there any uniqueness at all in such a factorization? We now prove that the
parity of the number of factors is the same for all factorizations of a permuta-

tion o: that is, the number of transpositions is always even (as suggested by
the above factorizations of « = (1 2 3)) or is always odd.

Definition. A permutation a € S is even if it is a product of an even number of
transpositions; otherwise, « is odd.

It is easy to see that o = (1 2 3) is even, for there is a factorization
a = (1 3)(1 2)into two transpositions. On the other hand, we do not know
whether there are any odd permutations o at all; if « is a product of an
odd number of transpositions, perhaps it also has another factorization as a
product of an even number of transpositions. The definition of odd permuta-
tion a, after all, says that there is no factorization of « into an even number of
transpositions.

Lemma 14. If k, [ > 0, then
(@b)acy ..., bdy ...d)=(c,...c)bd, ...d)

and
(@bacy...c)bdy..d)=(@cy...cbd, .. 4d).

Proof. The left side sends ar>c, > cy; ¢ iy > cppy if | < k; > b a;
b—d,—dy; djd;—dyy if j <1; dj—>a>b. Similar evaluation of the
right side shows that both permutations are equal. For the second equation,
just multiply both sides of the first equation by (a b) on the left. W

Definition. If « € S, and « = B, ... B, is a complete factorization into disjoint
cycles, then signum o is defined by

sgn(o) = (—1)" ™

By Theorem 1.2, sgn is a well defined function (see Appendix III). If 7 is a
transposition, then it moves two numbers, say, i and j, and fixes each of the
n — 2 other numbers; therefore,t = (n —2) + 1 =n — 1, and so

sgn(t) = (=1 = 1,

Lemma 1.5. If € S, and 1 is a transposition, then

sgn(cf) = —sgn(p).
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Proof. Let t = (a b) and let f =y, -- -y, be a complete factorization of f into
disjoint cycles (there is one 1-cycle for each i fixed by f, and every number
between 1 and n occurs in a unique 7). If a and b occur in the same v, say, in
yi,theny, =(a ¢; ... ¢, b dy ... d)),wherek > 0and! > 0. By Lemma 1.4,

=@ c )b dy o dy),

and so 78 = (ty,)7,...7, 1s a complete factorization with an extra cycle (ty,
splits into two disjoint cycles). Therefore, sgn(tf) = (—1)""**Y = —sgn(p).
The other possibility is that a and b occur in different cycles, say, 7y, =
(@cy ... ¢)and y,=(b d, ... d;), where k >0 and [ > 0. But now 78 =
(t9172)73 - - - > and Lemma 1.4 gives

y,=(@cy ¢ bdy e dy

Therefore, the complete factorization of t has one fewer cycle than does f,
and so sgn(tf) = (—1)" D = —sgn(f). W

Theorem 1.6. For all o, f € S,,,
sgn(ap) = sgn(x) sgn(p).

Proof. Assume that o € S, is given and that « = 7,...1, is a factorization of
o into transpositions with m minimal. We prove, by induction on m, that
sgn(af) = sgn(a) sgn(p) for every f € S,. The base step is precisely Lemma
1.5. If m > 1, then the factorization t,...t,, is also minimal: if 7,...t, =
0, ...0, with each g; a transposition and g <m — 1, then the factorization
® = 7,0, ...0, violates the minimality of m. Therefore,

sgn(af) = sgn(t, - 1,,f) = —sgn(t, - 7,,f) (Lemma 1.5)
= —sgn(t, " 1,,) sgn(p) (by induction)
= sgn(t; - T,,) sgn(p) (by Lemma 1.5)
= sgn(a) sgn(p). M
Theorem 1.7.

(i) A permutation o € S, is even if and only if sgn(a) = 1.
(i) A permutation o is odd if and only if it is a product of an odd number of
transpositions.

Proof. (i) We have seen that sgn(tr) = —1 for every transposition t. Therefore,
ifa = 7,...7, is a factorization of a into transpositions, then Theorem 1.6 gives
sgn(a) = sgn(t,)...sgn(t,) = (—1)% Thus, sgn(a) = 1 if and only if g is even.
If o is even, then there exists a factorization with g even, and so sgn(a) = 1.
Conversely, if 1 = sgn(x) = (— 1)4, then q is even and hence « is even.

(i) If  is odd, then it has no factorization into an even number of transpo-
sitions, and so it must be a product of an odd number of them. Conversely, if
o =1;...7, with g odd, then sgn(x) = (— 1) = —1; by (i), « is not even, and
hence «is odd. W
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EXERCISES

1.19. Show that an r-cycle is an even permutation if and only if 7 is odd.

123456789>

1.20. Compute sgn(a) foroz=(9 87654321

1.21. Show that S, has the same number of even permutations as of odd permuta-
tions. (Hint. If t = (1 2), consider the function f: S, — S, defined by f(@) = ta.)

1.22. Let o, B € S,. If a and B have the same parity, then of is even; if « and § have
distinct parity, then of is odd.

Semigroups
We are now going to abstract certain features of Sy.

Definition. A (binary) operation on a nonempty set G is a function
u:G xG-G.

An operation u assigns to each ordered pair (a, b) of elements of G a third
element of G, namely, u(a, b). In practice, u is regarded as a “multiplication”
of elements of G, and, instead of u(a, b), more suggestive notations are used,
such as ab,a + b,ac b, or axb. In this first chapter, we shall use the star
notation a * b.

It is quite possible that a*b and b#*a are distinct elements of G. For
example, we have already seen that (1 2)(1 3) # (1 3)(1 2)in G = S;.

The Law of Substitution (if a = a’ and b = b’, then a*b = a’ *b’) is just the
statement that u is a well defined function: since (a, b) = (@', b’), it follows that
u(a, b) = u(a’, b'); thatis,axb = a’ xb’.

One cannot develop a theory in this rarefied atmosphere; conditions on the
operation are needed to obtain interesting results (and to capture the essence
of composition in Sy). How can we multiply three elements of G? Given (not
necessarily distinct) elements a,, a,, a; € G, the expression a, * a, * a; is am-
biguous. Since we can * only two elements of G at a time, there is a choice:
form a, * a, first, and then * this new element of G with aj to get (a, * a,) * a;;
or, form a, *(a, * a;). In general, these two elements of G may be different.
For example, let G = Z, the set of all integers (positive, negative, and zero),
and let the operation be subtraction: a*b = a — b; any choice of integers
a, b, ¢ with ¢ # 0 gives an example with (a — b) — ¢ # a — (b — ¢).

Definition. An operation * on a set G is associative if
(axb)xc=ax(bx*c)

for every a, b, c € G.
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Exercise 1.3 shows that multiplication in Sy is associative. Associativity
allows one to multiply every ordered triple of elements in G unambiguously;
parentheses are unnecessary, and there is no confusion in writing a* b * c. If
we are confronted by four elements of G, or, more generally, by a finite
number of elements of G, must we postulate more intricate associativity
axioms to avoid parentheses?

Consider the elements of G that can be obtained from an expression
a, *a, *- - *a,. Choose two adjacent a’s, multiply them, and obtain an ex-
pression with only n — 1 factors in it: the product just formed and n — 2
original factors. In this new expression, choose two adjacent factors (either an
original pair or an original g; adjacent to the new product from the first step)
and multiply them. Repeat this procedure until there is an expression with
only two factors; multiply them and obtain an element of G. Let us illustrate
this process with the expression axbx*c*d. We may first multiply a*b,
arriving at (a*b)*c*d, an expression with three factors, namely, a*b, c,
and d. Now choose either the pair ¢, d or the pair a*b, c; in either case,
multiply the chosen pair, and obtain the shorter expressions (a * b) * (c * d) or
[(a*b)*c] *d. Each of these last two expressions involves only two factors
which can be multiplied to give an element of G. Other ways to evaluate the
original expression begin by forming b *c or ¢ *d as the first step. It is not
obvious whether all the elements arising from a given expression are equal.

Definition. An expression a, a, - * a, needs no parentheses if, no matter
what choices of multiplications of adjacent factors are made, the resulting
elements of G are all equal.

Theorem 1.8 (Generalized Associativity). If * is an associative operation on a
set G, then every expression a, x a, * -+ * a, needs no parentheses.

Proof. The proof is by induction on n > 3. The base step n = 3 holds because
* is associative . If n > 3, consider two elements obtained from an expression
a, *a, - = a, after two series of choices:

1 (a1*"'*ai)*(ai+1*"'*an) and (a1*"'*aj)*(aj+1*"'*an)

(the choices yield a sequence of shorter expressions, and the parentheses
indicate ultimate expressions of length 2). We may assume that i <. Since
each of the four expressions in parentheses has fewer than n factors, the
inductive hypothesis says that each of them needs no parentheses. If i = j, it
follows that the two products in (1) are equal. If i < j, then rewrite the first
expression as

2 (ag*- % a)*([aiey * % a1 %[44 xxa,])
and rewrite the second expression as '

(3) ([a1*~--*ai]*[ai+1*-.-*aj])*(aj+1*...*a”)'
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By induction, each of the expressions a; *---*a;, @;.; ****a;, and a1 %" *a,
yield (uniquely defined) elements A, B, and C of G, respectively. Since (2) is
the expression 4 *(Bx C) and (3) is the expression (4 * B) * C, associativity
says that both these expressions give the same element of G. W

Definition. A semigroup (G, ) is a nonempty set G equipped with an associa-
tive operation .

Usually, one says “Let G be a semigroup ...,” displaying the set G, but
tacitly assuming that the operation * is known. The reader must realize,
however, that there are many possible operations on a set making it a semi-
group. For example, the set of all positive integers is a semigroup under
either of the operations of ordinary addition or ordinary multiplication.

Definition. Let G be a semigroup and let a e G. Define a' = a and, for
n > 1, define a"*! = axa™

Corollary 1.9. Let G be a semigroup, let a € G, and let m and n be positive
integers. Then a™*a" = a™" = a"xa™ and (a™)" = a™ = (a")™.

Proof. Both sides of the first (or second) equations arise from an expression
having m + n (or mn) factors all equal to a. But these expressions need no
parentheses, by Theorem 1.8. W

The notation a" obviously comes from the special case when * is multipli-
cation; a" = aa...a (n times). When the operation is denoted by +, it is more
natural to denote a*a*---*a=a+ a + --* + a by na. In this additive nota-
tion, Corollary 1.9 becomes ma + na = (m + n)a and (mn)a = m(na).

Groups

The most important semigroups are groups.

Definition. A group is a semigroup G containing an element e such that:

() exa=a=axeforallaeG;
(ii) for every a € G, there is an element b € G with

axb = e=bxa.
Exercises 1.1, 1.2, and 1.3 show that Sy is a group with composition as

operation; it is called the symmetric group on X. When X = {1,2,..., n},
then Sy is denoted by S, and it is called the symmetric group on n letters.
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Definition. A pair of elements a and b in a semigroup commutes if axb =
bxa. A group (or a semigroup) is abelian if every pair of its elements
commutes.

It is easy to see, for all n > 3, that S, is not abelian.

There are many interesting examples of groups; we mention only a few
of them now.

The set Z of all integers (positive, negative, and zero) is an abelian group
with ordinary addition as operation:a*xb =a + b;e = 0; —a + a = 0. Some
other additive abelian groups are the rational numbers @, the real numbers
R, and the complex numbers C. Indeed, every ring is an additive abelian
group (it is only a semigroup with 1 under multiplication).

Recall that if n>2 and a and b are integers, then a =bmodn
(pronounced: a is congruent to b modulo n) means that n is a divisor of a — b.
Denote the congruence class of an integer a mod n by [a]; that is,

[a]l ={beZ:b=amodn}
={a+ kn:keZ}.

The set Z,, of all the congruence classes mod n is called the integers modulo
n; it is an abelian group when equipped with the operation: [a] + [b] =
[a + b]; here e = [0] and [ —a] + [a] = [0] (Z, is even a commutative ring
when “one” is [ 1] and multiplication is defined by [a] [b] = [ab]). The reader
should prove that these operations are well defined: if [a'] = [a] and [b'] =
[b], that is, if a’ = amod n and b’ = b mod n, then [a@’ + b'] = [a + b] and
[a’'b’] = [ab].

If k is a field, then the set of all n x n nonsingular matrices with entries in
k is a group, denoted by GL(n, k), called the general linear group: here the
operation is matrix multiplication, e is the identity matrix E, and if A7 is the
inverse of the matrix A4, then A4~ = E = A7'A4. If n > 2, then GL(n, k) is not
abelian; if n = 1, then GL(1, k) is abelian: it is the multiplicative group k> of
all the nonzero elements in k.

If R is an associative ring (we insist that R has an element 1), then an
element u is a unit in R if there exists v € R with uv = 1 = vu. If a is a unit, so
that ab = 1 = ba for some b € R, then it is easy to see that ua is also a unit in
R (with inverse bv) and that U(R), the group of units in R, is a multiplicative
group. If R is a field k, then U(k) = k*. If R is the ring of all n x n matrices
over a field k, then U(R) = GL(n, k).

Theorem 1.10. If G is a group, there is a unique element e withexa =a =axe
for all a € G. Moreover, for each a € G, there is a unique b € G withaxb = e =
bxa.

Proof. Suppose that e'xa =a =axe' for all ae G. In particular, if a = ¢,
then ¢’ * e = e. On the other hand, the defining property of e gives e’ xe = ¢’,
andsoe =e.
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Suppose that axc=e=cxa. Then c=c*xe=cx(a*b)=(cxa)*b=
exb =b,asdesired. W

As a result of the uniqueness assertions of the theorem, we may now give
names to e and to b. We call e the identity of G and, if axb = e = b*a, then

we call b the inverse of a and denote it by a™*.

Corollary 1.11. If G is a group and a € G, then

(@Y t=a
Proof. By definition, (a™!)™! is that element g € G with a g =e =gx*a™".
But a is such an element, and so the uniqueness givesg =a. B

Definition. If G is a group and a € G, define the powers of a as follows: if n is
a positive integer, then a” is defined as in any semigroup; define a® = e; define
a"=(aty

Even though the list of axioms defining a group is short, it is worthwhile
to make it even shorter so it will be as easy as possible to verify that a
particular example is, in fact, a group.

Theorem 1.12. If G is a semigroup with an element e such that:

(i') exa=a forallae G;and
(ii') for each a € G there is an element b € G with b*a = e, then G is a group.

Proof. We claim that if x * x = x in G, then x = e. There is an element y € G
with y+x =e, and y*(x*x) = y*x = e. On the other hand, y*(x*x) =
(y*x)*x = e* x = x. Therefore, x = e.

If b+ a = e, let us show that a*b = e. Now (a*b)*(a*b) = a[(b*a)*b]
= ax*[exb] = axb, and so our claim gives a*b = e. (Observe that we have
used associativity for an expression having four factors.)

If a € G, we must show that axe = a. Choose be G with bxa=e =axb
(using our just finished calculation). Then axe = a*(b*a) = (a*b)xa =
exa=aqa,as desired. W

EXERCISES
1.23. If G is a group and a4, a,, ..., a, € G, then
(a, =.=az='<~'~:o=an)‘1 = a;l *a;_ll*-'-*al_l.
Conclude that if n > 0, then (a™')" = (a")™".

1.24. Let ay, ay, ..., a, be elements of an abelian semigroup. If b, b,, ..., b, is a
rearrangement of the q;, then

Ay %Ay % "xa,=b xb,*---xb,.
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1.25.

1.26.

1.27.

1.28.

1.29.

1.30.

1.31.

1.32

1.33.

1.34.

1.35.

1.36.

1.37.

Let a and b lie in a semigroup G. If a and b commute, then (a * b)" = a”"* b" for
every n > 1;if G is a group, then this equation holds for every n € Z.

A group in which x? = e for every x must be abelian.

(i) Let G be a finite abelian group containing no elements a # e with a* = e.
Evaluate a, xa, ***- * a,, where a,, a,, ..., a, is a list with no repetitions, of
all the elements of G.

(i) Prove Wilson’s theorem: If p is prime, then

(p—1D!'=—-1 modp.
(Hint. The nonzero elements of Z, form a multiplicative group.)

@ Ifa=(12...r—1r,thenat=0@rr—1...21).

123456789
ii) Find thei f .
(i) Fin emverseo<641253897>

Show that a: Z,; = Z,,, defined by a(x) = 4x> — 3x’, is a permutation of Z,,
and write it as a product of disjoint cycles. What is the parity of «? What is a™?

Let G be a group, let ae G, and let m, n e Z be (possibly negative) integers.
Prove that a™*a" = a™*" = a"+a™ and (a™)" = a™ = (a")".

Let G be a group, let a € G, and let m and n be relatively prime integers. If
a™ = e, show that there exists b € G with a = b". (Hint. There are integers s and
t with 1 = sm + tn))

(Cancellation Laws). In a group G, either of the equations a*b =axc and
bxa = c*aimplies b = c.

Let G be a group and leta € G.

(i) For each a € G, prove that the functions L,: G — G, defined by x+—>axx
(called left translation by a), and R,: G — G, defined by x> x *a™! (called
right translation by a), are bijections.

(ii) For all q, b € G, prove that L,,, = L,o L, and R,,, = R, © R,.

(iii) For all a and b, prove that L,o R, = R, 0 L,.

Let G denote the multiplicative group of positive rationals. What is the identity
of G? If a € G, what is its inverse?

Let n be a positive integer and let G be the multiplicative group of all nth roots
of unity; that is, G consists of all complex numbers of the form e*"*", where
ke Z. What is the identity of G? If a € G, what is its inverse? How many
elements does G have?

Prove that the following four permutations form a group V (which is called the
4-group):
L 1234 (1324 1492)3I)

Let R =RuU{c0}, and define 1/0 = 00, 1/00 =0, c0/oo =1, and 1 — 00 =
o0 = o0 — 1. Show that the six functions R — R, given by x, 1/x, 1 —x,
1/(1 — x), x/(x — 1), (x — 1)/x, form a group with composition as operation.
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Homomorphisms

Let G be a finite group with n elements a;, a,, ..., a,. A multiplication table
for G is the n x n matrix with i, j entry a; * a;:

G | a, a, a,

a; a,xa, ay*a; a *ay,
a, a;*a, a;*a, a xa,
a, a,*a, a,*a, a,*a,

Informally, we say that we “know” a finite group G if we can write a multipli-
cation table for it. Notice that we say “a” multiplication table and not “the”
multiplication table, for a table depends on the particular ordering a,, a,, ...,
a, of the elements of G. (One may also speak of multiplication tables of
infinite groups, but in this case, of course, the matrices are infinite.) It is
customary to list the identity e first so that the first row (and first column)
display the elements in the order they occur on a chosen list.

Let us now consider two almost trivial examples of groups. Let G be the
group whose elements are the numbers 1 and — 1, with operation multiplica-
tion; let H be the additive group Z,. Compare multiplication tables of these
two groups:

(0] | (01 [1]
(1] 11 o]

It is quite clear that G and H are distinct groups; on the other hand, it is

equally clear that there is no significant difference between them. Let us make
this idea precise.

Definition. Let (G, x) and (H, o) be groups.* A function f:G—-H is a
homomorphism if, for all a, b € G,

flaxb) = f(a) o f(b).

An isomorphism is a homomorphism that is also a bijection. We say that G is
isomorphic to H, denoted by G > H, if there exists an isomorphism f: G — H.

The two-element groups G and H, whose multiplication tables are given
above, are isomorphic: define f: G —» H by f(1) = [0] and f(—1) = [1].

3 This definition also applies to semigroups.
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Let f: G —» H be an isomorphism, and let a,, a,, ..., a, be a list, with no
repetitions, of all the elements of G. Since f is a bijection, every element of H
occurs exactly once on the list f(a,), f(a,), ..., f(a,), and so this list can be
used to form a multiplication table for H. That f is a homomorphism, that is,
fla;xa;) = f(a;) o f(a;), says that if we superimpose the multiplication table
of G onto that of H, then the tables “match.” In this sense, isomorphic groups
G and H have the “same” multiplication tables. Informally, one regards G
and H as being essentially the same, the only distinction being that G is
written in English and H is written in French; an isomorphism f is a
dictionary which translates one to the other.

Two basic problems occurring in mathematics are: classification of all
systems of a given type (e.g., groups, semigroups, vector spaces, topological
spaces); classification of all the “maps” or transformations from one such
system into another. By a classification of systems, we mean a way to distin-
guish different systems or, what is the same thing, a way to tell when two
systems are essentially the same (isomorphic). For example, finite-dimen-
sional vector spaces over a field k are classified by the theorem that two such
are isomorphic if and only if they have the same dimension. One can even
classify all the maps (linear transformations) between vector spaces; they give
rise to similarity classes of matrices which are classified by canonical forms.
The same two problems arise in Group Theory: when are two groups
isomorphic; describe all the homomorphisms from one group to another.

Both of these problems are impossibly hard, but partial answers are known
and are very useful.

Theorem 1.13. Let f: (G, ) = (G, o) be a homomorphism.

(i) f(e) = e’, where e’ is the identity in G'.
(i) If a € G, then f(a™*) = f(a)™".
(iii) If ae G and ne€ Z, then f(a") = f(a)".

Proof. (i) Applying f to the equation e=exe gives f(e) = flexe) =

f(e) o f(e). Now multiply each side of the equation by f(e)™! to obtain e’ =
e).

It ()ii) Applying f to the equations a*a~! = e = a~' *a gives f(a) o f (a")_=

¢’ = f(a") o f(a). It follows from Theorem 1.10, the uniqueness of the in-

verse, that f(a™!) = f(a)™". )
(iii) An easy induction proves f(a") = f(a)" for all n > 0, and then f(a™") =

flay) =fla')y=fa" =

Here are some examples. Theorem 1.6 shows that sgn: §, - {+1} is a
homomorphism; the function v: Z - Z,, defined by v(a) = [a], is a homo-
morphism; if k* denotes the multiplicative group of nonzero elements of a
field k, then determinant is a homomorphism det: GL(n, k) > k™.
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1. Groups and Homomorphisms

EXERCISES

1.38.

1.39.

1.40.

1.41.

1.42.

1.43.

1.44.

1.45.

1.46.

1.47.

(i) Write a multiplication table for S;.
(ii) Show that S; is isomorphic to the group of Exercise 1.37. (Hint. The ele-
ments in the latter group permute {0, 1, c0}.)

Let f: X — Y be a bijection between sets X and Y. Show that a+> foao f!
is an isomorphism Sy — Sy.

Isomorphic groups have the same number of elements. Prove that the converse
is false by showing that Z, is not isomorphic to the 4-group V defined in
Exercise 1.36.

If isomorphic groups are regarded as being the same, prove, for each positive
integer n, that there are only finitely many distinct groups with exactly n
elements.

Let G = {xy,..., x,} be a set equipped with an operation x, let A = [a;] be its
multiplication table (i.e., a; = x; * x;), and assume that G has a (two-sided) iden-
tity e (that is, e ¥ x = x = x x ¢ for all x € G).

(i) Show that * is commutative if and only if A is a symmetric matrix.

(i) Show that every element x € G has a (two-sided) inverse (i.e., there is x' € G
with x * x’ = e = x’*x) if and only if the multiplication table 4 is a Latin
square; that is, no x € G is repeated in any row or column (equivalently,
every row and every column of 4 is a permutation of G.)

(iii) Assume that e = x,, so that the first row of 4 has a,; = x;. Show that the
first column of A has a;; = x;* for all i if and only if a; = e for all i.

(iv) With the multiplication table as in (iii), show that = is associative if and only

if aijajk = Ay for all i, j, k.

(@) If f: G—> H and g: H —» K are homomorphisms, then so is the composite
gof:G—-K.
(i) If f: G— H is an isomorphism, then its inverse f': H— G is also an
isomorphism.
(iii) If € is a class of groups, show that the relation of isomorphism is an equiva-
lence relation on &.

Let G be a group, let X be a set, and let f: G — X be a bijection. Show that there
is a unique operation on X so that X is a group and f is an isomorphism.

If k is a field, denote the columns of the n x n identity matrix E by &, ..., &,. A
permutation matrix P over k is a matrix obtained from E by permuting its
columns; that is, the columns of P are ¢,, . .., &, for some « € S,. Prove that the
set of all permutation matrices over k is a group isomorphic to S,. (Hint. The
inverse of P is its transpose P', which is also a permutation matrix.)

Let T denote the circle group: the multiplicative group of all complex numbers
of absolute value 1. For a fixed real number y, show that f;: R— T, given
by f,(x) = e™*, is a homomorphism. (The functions f, are the only continuous
homomorphisms R — T.)

If a is a fixed element of a group G, define y,: G —» G by 7,(x) = a*x*xa™ (y, is
called conjugation by a).
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(i) Prove that v, is an isomorphism.
(i) If a, b € G, prove that y,y, = 7,,,.*

1.48. If G denotes the multiplicative group of all complex nth roots of unity (see
Exercise 1.35), then G =~ Z,,.

1.49. Describe all the homomorphisms from Z,, to itself. Which of these are
isomorphisms?

1.50. (i) Prove that a group G is abelian if and only if the function f: G — G, defined
by f(a) = a™', is a homomorphism.

(it) Let f: G — G be an isomorphism from a finite group G to itself. If f has no
nontrivial fixed points (i.e., f(x) = x implies x = e) and if f o f is the identity
function, then f(x) = x™ for all x € G and G is abelian. (Hint. Prove that
every element of G has the form x * f(x)~')

1.51 (Kaplansky). An element a in a ring R has a left quasi-inverse if there exists an
element b e R with a + b — ba = 0. Prove that if every element in a ring R
except 1 has a left quasi-inverse, then R is a division ring. (Hint. Show that
R — {1} is a group under the operationao b = a + b — ba.)

1.52. (i) If G is the multiplicative group of all positive real numbers, show that
log: G — (R, +) is an isomorphism. (Hint: Find a function inverse to log.)
(i) Let G be the additive group of Z[x] (all polynomials with integer coeffi-
cients) and let H be the multiplicative group of all positive rational numbers.
Prove that G > H. (Hint. Use the Fundamental Theorem of Arithmetic.)

Having solved Exercise 1.52, the reader may wish to reconsider the ques-
tion when one “knows” a group. It may seem reasonable that one knows a
group if one knows its multiplication table. But addition tables of Z[x] and
of H are certainly well known (as are those of the multiplicative group of
positive reals and the additive group of all reals), and it was probably a
surprise that these groups are essentially the same. As an alternative answer
to the question, we suggest that a group G is “known” if it can be determined,
given any other group H, whether or not G and H are isomorphic.

41t is easy to see that §,: G — G, defined by §,(x) = a™* *x *q, is also an isomorphism; however,
8,8, = 0y.q. Since we denote the value of a function f by f(x), that is, the symbol f is on the left,
the isomorphisms y, are more natural for us than the J,. On the other hand, if one denotes é,,(x)
by x° then one has put the function symbol on the right, and the , are more convet}lent:
x2* = (x)’. Indeed, many group theorists nowadays put all their function symbols on the right!



CHAPTER 2

The Isomorphism Theorems

We now drop the * notation for the operation in a group. Henceforth, we
shall write ab instead of a * b, and we shall denote the identity element by 1
instead of by e.

Subgroups

Definition. A nonempty subset S of a group G is a subgroup of G if se G
implies s™' e Gand s, t € G imply st € G.

If X is a subset of a group G, we write X = G; if X is a subgroup of G, we
write X < G.

Theorem 2.1. If S < G (i.e., if S is a subgroup of G), then S is a group in its own
right.

Proof. The hypothesis “s, t € S imply st € S” shows that S is equipped with
an operation (if u: G x G — G is the given multiplication in G, then its restric-
tion u|S x S has its image contained in S). Since S is nonempty, it contains
an element, say, s, and the definition of subgroup says that s™! € S; hence,
1 = ss! € S. Finally, the operation on § is associative because a(bc) = (ab)c
for every a, b,c e G implies, in particular, that a(bc) = (ab)c for every
a,b,ceS. 1

Verifying associativity is the most tedious part of showing that a given set
G equipped with a multiplication is actually a group. Therefore, if G is given
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as a subset of a group G*, then it is much simpler to show that G is a
subgroup of G* than to verify all the group axioms for G. For example, the

four permutations of the 4-group V form a group because they constitute a
subgroup of S,.

Theorem 2.2. A subset S of a group G is a subgroup if and only if 1€ S and
s,teSimplyst™tes.

Proof. If se S,then Is"! =s™ ' e S, and if s, t € S, then s(t™!)™! = st € S. The
converse is also easy. W

Definition. If G is a group and a € G, then the cyclic subgroup generated by a,
denoted by (a), is the set of all the powers of a. A group G is called cyclic if
there is a € G with G = {a); that is, G consists of all the powers of a.

It is plain that {a) is, indeed, a subgroup of G. Notice that different ele-
ments can generate the same cyclic subgroup. For example, {a) = {(a™).

Definition. If G is a group and a € G, then the order of a is |{a)|, the number
of elements in {a).

Theorem 2.3. If G is a group and a € G has finite order m, then m is the smallest
positive integer such that a™ = 1.

Proof. If a = 1, then m = 1. If a # 1, there is an integer k > 1 so that 1, q,

a2, ..., a* ! are distinct elements of G while a* = a' for some i with 0 <i <
k — 1. We claim that a*=1=a° If a* =a’ for some i > 1, then k —i <
k — 1 and a*~ = 1, contradicting the original list 1, a, a% ..., a*"! having no

repetitions. It follows that k is the smallest positive integer with at=1.

It now suffices to prove that k = m; that is, that {a) = {1, a, a% ...,a" .
Clearly ¢a) o {1, a, a?, ..., a*"'}. For the reverse inclusion, let a' be a power
of a. By the division algorithm, | = gk + r, where 0 <r < k. Hence, a' =
a®™*r = qekgr — g" (because a* = 1),andsoa' =a"€ {1,a,d%...,a"7'}. W

If « € S, is written as a product of disjoint cycles, say, o = B ... B, where ﬁi
is an ri-cycle for every i, then Exercise 1.12(iii) shows that the order of « is
lem{r, ..., 1}

Corollary 2.4. If G is a finite group, then a nonempty subset S of G is a
subgroup if and only if s, t € S imply st € S.

Proof. Necessity is obvious. For sufficiency, we must show that se § im-
plies s7* € S. It follows easily by induction that S contains all the powers c1>f s.
Since G is finite, s has finite order, say, m. Therefore, 1=s"eSand s =

s"leS. B
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ExaMpLE 2.1. If G is a group, then G itself and {1} are always subgroups (we
shall henceforth denote the subgroup {1} by 1). Any subgroup H other than
G is called proper, and we denote this by H < G; the subgroup 1 is often
called the trivial subgroup.

ExampLE 2.2. Let f: G — H be a homomorphism, and define
kernel f = {a€ G: f(a) = 1}

and
image f = {h e H: h = f(a) for some a € G}.

Then K = kernel f is a subgroup of G and image f is a subgroup of H. To see
that K < G, note first that f(1) = 1, so that 1€ K. Also, if s, ¢ € K, then
f(s)=1=f(t), and so f(st™*) = f(s)f(t)"* = 1; hence st™' € K, and so K is a
subgroup of G. It is equally easy to see that image f is a subgroup of H.

Notation. We usually write ker f instead of kernel f and im f instead of
image f.

We have been using multiplicative notation, but it is worth writing the
definition of subgroup in additive notation as well. If G is an additive group,
then a nonempty subset S of G is a subgroup of G if s € S implies —s € S and
s,te Simply s + t € S. Theorem 2.2 says that S is a subgroup if and only if
OeSands,teSimplys —teS.

Theorem 2.5. The intersection of any family of subgroups of a group G is
again a subgroup of G.

Proof. Let {S;: i € I} be a family of subgroups of G. Now 1 € §; for every i, and
sole()S.Ifa be()S,thena, be S, for every i, and so ab™! € S, for every
i;hence,ab™' € () S,and (S, <G. W

Corollary 2.6. If X is a subset of a group G, then there is a smallest subgroup
H of G containing X; that is, if X < Sand S < G, then H < S.

Proof. There are subgroups of G containing X; for example, G itself contains
X; define H as the intersection of all the subgroups of G which contain X.
Note that H is a subgroup, by Theorem 2.5,and X < H. If S < Gand X c S,
then S is one of the subgroups of G being intersected to form H; hence,
H < S, and so H is the smallest such subgroup. W

Definition. If X is a subset of a group G, then the smallest subgroup of G
containing X, denoted by (X), is called the subgroup generated by X. One
also says that X generates {X).

In particular, if H and K are subgroups of G, then the subgroup (H U K)
is denoted by H v K.
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If X consists of a single element a, then {(X) = <{a), the cyclic subgroup
generated by a. If X is a finite set, say, X = {a,, a,, ..., a,} then we write
(X> =<ay,a,,...,a,)instead of (XD = ({ay, a5, ...,a,}).

Here is a description of the elements in {X.

Definition. If X is a nonempty subset of a group G, then a word on X is an
element w € G of the form
w=Xx{1x52...x:n,

where x;€ X,e; = +1,andn > 1.

Theorem 2.7. Let X be a subset of a group G. If X = &, then<{X)> = 1;if X
is nonempty, then {X) is the set of all the words on X.

Proof. If X = (¥, then the subgroup 1 = {1} contains X, and so (X) = 1. If
X is nonempty, let W denote the set of all the words on X. It is easy to see
that W is a subgroup of G containing X: 1 = x;1x, € W; the inverse of a
word is a word; the product of two words is a word. Since (X ) is the smallest
subgroup containing X, we have (X) < W. The reverse inclusion also holds,
for every subgroup H containing X must contain every word on X. There-
fore, W < H, and W is the smallest subgroup containing X. W

EXERCISES
2.1. Show that A4,, the set of all even permutations in S,, is a subgroup with n!/2
elements. (4, is called the alternating group on n letters.) (Hint. Exercise 1.21.)

22. If k is a field, show that SL(n, k), the set of all n x n matrices over k having
determinant 1, is a subgroup of GL(n, k). (SL(n, k) is called the special linear
group over k.

2.3. The set theoretic union of two subgroups is a subgroup if and only if one is
contained in the other. Is this true if we replace “two subgroups” by “three
subgroups™?

2.4. Let S be a proper subgroup of G. If G — § is the complement of S, prove that
(G-5)=0G.
2.5. Let f: G —» H and g: G — H be homomorphisms, and let
K = {ae G: f(a) = g(a)}.
Must K be a subgroup of G?

2.6. Suppose that X is a nonempty subset of a set Y. Show that Sy can be imbedded in
Sy; that is, Sy is isomorphic to a subgroup of Sy.

2.7. Ifn> 2, then A, is generated by all the 3-cycles. (Hint. (ij)( jk) = (ijk) and (ij) (k]) =
(ik) (jkI).)

2.8. Imbed S, as a subgroup of 4,,,, but show, for n > 2, that §, cannot be imbedded
in An+1 .
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29. (i) Prove that S, can be generated by (1 2),(1 3),..., (1 n).
(ii) Prove that S, can be generated by (1 2), (2 3),...,(i+1),....,(n—1,n).
(iii) Prove that S, can be generated by the two elements (1 2and(12... n).
(iv) Prove that S, cannot be generated by (1 3) and (1 2 3 4). (Thus, S, can be
generated by a transposition and a 4-cycle, but not every choice of transpo-
sition and 4-cycle gives a generating set.)

Lagrange’s Theorem

Definition. If S is a subgroup of G and if ¢ € G, then a right coset of S in G is
the subset of G
St = {st:s€ S}

(a left coset is tS = {ts: s € S}). One calls ¢ a representative of St (and also
of tS).

EXAMPLE 2.3. Let G be the additive group of the plane R?: the elements of G
are vectors (x, y), and addition is given by the “parallelogram law”: (x, y) +
(x',¥")=(x+ x",y +y'). A line £ through the origin is the set of all scalar
multiples of some nonzero vector v = (X, J,); that is, £ = {rv: r e R}. It is
easy to see that £ is a subgroup of G. If u = (a, b) is a vector, then the coset
u + ¢ is easily seen to be the line parallel to £ which contains u.

ExaMpLE 2.4. If G is the additive group Z of all integers, if S is the set of all
multiples of an integer n (S = (n), the cyclic subgroup generated by n), and if
aeZ,thenthecoseta + S = {a + qn: g € Z} = {k € Z: k = a mod n}; that is,
the coset a + {n) is precisely the congruence class [a] of a mod n.

EXAMPLE 2.5. Let G = Sy and let H = (1) = {1, 1}, where 7 = (1 2). The right
cosets of H in G are

H={l,<; H123)={123,23)}
H(1 32)={1 32,1 3)}
The left cosets of H in G are
H={lLt; (123H={123),(13)}
(132H={(1 32,2 3)}

Notice that distinct right cosets are disjoint (as are distinct left cosets), just as
in the example of parallel lines. Notice also that right cosets and left cosets
can be distinct; for example, (1 2 3)H # H(1 2 3); indeed, (1 2 3)H is not
equal to any right coset of H in G.

A right coset St has many representatives; every element of the form st
for se S is a representative of St. The next lemma gives a criterion for
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determining whether two right cosets of S are the same when a representative
of each is known.

Lemma 2.8.If S < G, then Sa = Sb if and onlyifab™' € S (aS = bS if and only
if b~laes).

Proof. If Sa = Sbh, then a = lae Sq = Sb, and so there is s € § with g = sb;
hence, ab™! = s € S. Conversely, assume that ab™! = g S; hence, a = gb.
To prove that Sa = Sb, we prove two inclusions. If x € Sq, then x = sa for
some s € S, and so x = sob € Sb; similarly, if y € Sb, then y = s'b for some
s'eS,and y = s'67'a € Sa. Therefore, Sa = Sb. W

Theorem 2.9. If S < G, then any two right (or any two left) cosets of S in G are
either identical or disjoint.

Proof. We show that if there exists an element x € Sa  Sh, then Sa = Sb.
Such an x has the form sb = x = ta, where s,teS. Hence, ab™! =t"'5€8,
and so the lemma gives Sa = Sh. W

Theorem 2.9 may be paraphrased to say that the right cosets of a subgroup
S comprise a partition of G (each such coset is nonempty, and G is their
disjoint union). This being true, there must be an equivalence relation on G
lurking somewhere in the background: it is given, for a, b € G, bya=bif
ab™! € S, and its equivalence classes are the right cosets of S.

Theorem 2.10. If S < G, then the number of right cosets of S in G is equal to
the number of left cosets of S in G.

Proof. We give a bijection f: # — %, where £ is the family of right cosets of
Sin G and . is the family of left cosets. If Sa € 4, your first guess is to define
f(Sa) = aS, but this does not work. Your second guess is to define f(Sa) =
a~'S, and this does work. It must be verified that f is well defined; that is, if
Sa = Sb, then a™'§ = b~'S (this is why the first guess is incorrect). It is rou-
tine to prove that f is a bijection. W

Definition. If S < G, then the index of S in G, denoted by [G:S], is the
number of right cosets of S in G.

Theorem 2.10 shows that there is no need to define a right index and a left
index, for the number of right cosets is equal to the number of left cosets.

It is a remarkable theorem of P. Hall (1935) that in a finite group G, one
can always (as above) choose a common system of representatives for the right
and left cosets of a subgroup S; if [G : S] = n, there exist elements ¢,,...,t, €
G so that ¢S, ...,t,S is the family of all left cosets and St,, ..., St, is the
family of all right cosets.
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Definition. If G is a group, then the order of G, denoted by |G, is the number
of elements in G.

The next theorem was inspired by work of Lagrange (1770), but it was
probably first proved by Galois.

Theorem 2.11 (Lagrange). If G is a finite group and S < G, then |S| divides |G|
and [G: 8] = |G]/ISI.

Proof. By Theorem 2.9, G is partitioned into its right cosets
G=St;uSt,u---uUSt,

and so |G| = Y /-, |St;|. But it is easy to see that f;: S — St;, defined by fi(s) =
st;, is a bijection, and so |St;| = |S| for all i. Thus |G| = n|S|, where n =

[G:S]. W
Corollary 2.12. If G is a finite group and a € G. Then the order of a divides |G|.

Proof. By definition, the order of a is |{a}|, and so the result follows at once
from Lagrange’s theorem. W

Definition. A group G has exponent n if x" = 1 for all x € G.

Remark. Some people use the term “exponent” to mean the smallest possible
n such that x" = 1 for all x € G. For us, the 4-group V has exponent 4 as well
as exponent 2.

Lagrange’s theorem shows that a finite group G of order n has exponent n.
Corollary 2.13. If p is a prime and |G| = p, then G is a cyclic group.

Proof. Take a € G with a # 1. Then the cyclic subgroup <a) has more than
one element (it contains a and 1), and its order |{a)| > 1 is a divisor of p.
Since p is prime, [{a)| =p =|G|,andso<a) =G. B

Corollary 2.14 (Fermat). If p is a prime and a is an integer, then a® = a mod p.

Proof. Let G = U(Z,), the multiplicative group of nonzero elements of Z,;
since p is prime, Z,, is a field and G is a group of order p — 1.

Recall that for integers a and b, one has a = b mod p if and only if [a] =
[b]in Z,.If a € Z and [a] = [0] in Z,,, then it is clear that [a]” = [0] = [a].
If [a] # [0], then [a] € G and so [a]?~! = [1], by Corollary 2.12; multiplying
by [a] now gives the desired result. W
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EXERCISES

2.10. If G is a finite group and K < H < G, then
[G:K]=[G:H][H:K].
2.11. Let a € G have order n = mk, where m, k > 1. Prove that a* has order m.
2.12. (i) Prove that every group G of order 4 is isomorphic to either Z, or the
4-group V.
(i) If G is a group with |G| < 5, then G is abelian.
2.13. If a € G has order n and k is an integer with a* = 1, then n divides k. Indeed,
{k € Z: a* = 1} consists of all the multiplies of n.
2.14.

If a € G has finite order and f: G > H is a homomorphism, then the order of
f(a) divides the order of a.

2.15. Prove that a group G of even order has an odd number of elements of order 2

(in particular, it has at least one such element). (Hint. If a € G does not have
order 2, thena # a™')

2.16. If H < G has index 2, then a® € H for every a € G.

2.17. () Ifa, b e G commute and if a™ = 1 = b", then (ab)* = 1, where k = lem{m, n}.
(The order of ab may be smaller than k; for example, take b = a™!) Con-

clude that if a and b commute and have finite order, then ab also has finite
order.

(i) Let G = GL(2, Q) and let 4, B € G be given by

0 -1 0 1
= B = .
A [1 O:I and |:_ | — 1:|
Show that 4* = E = B3, but that 4B has infinite order.

2.18. Prove that every subgroup of a cyclic group is cyclic. (Hint. Use the division
algorithm.)

2.19. Prove that two cyclic groups are isomorphic if and only if they have the same
order.

Definition. The Euler p-function is defined as follows:
o(1) =1, ifn>1, then¢(n) =|{k:1<k<nand(k n)=1}|

2.20. If G = <a) is cyclic of order n, then a* is also a generator of G if and only if
(k, n) = 1. Conclude that the number of generators of G is ¢(n).

2.21. (i) Let G = {a) have order rs, where (r, s) = 1. Show that there are unique
b, c € G with b of order r, ¢ of order s, and a = bc.
(i) Use part (i) to prove that if (r, s) = 1, then @(rs) = @(r)¢(s).
2.22. (i) If p is prime, then ¢(p*) = p* — p*~! = p*(1 — 1/p).
(i1) If the distinct prime divisors of n are p,, ..., p,, then
@(n) =n(l — 1/py)...(1 = 1/p,).
2.23 (Euler). If (r, s) = 1, then s°® = 1 mod r. (Hint. The order of the group of units
U(z,)is o(n).)
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Cyclic Groups

Lemma 2.15. If G is a cyclic group of order n, then there exists a unique
subgroup of order d for every divisor d of n.

Proof. If G = (aD, then (a") is a subgroup of order d, by Exercise 2.11.
Assume that S = {b) is a subgroup of order d (S must be cyclic, by Exercise
2.18). Now b? = 1; moreover, b = a™ for some m. By Exercise 2.13, md = nk
for some integer k, and b = a™ = (a")*. Therefore, {b) < {a""y, and this
inclusion is equality because both subgroups have orderd. W

Theorem 2.16. If n is a positive integer, then

n= Z (p(d)a

d|n

where the sum is over all divisors d of nwith1 <d <n.

Proof. If C is a cyclic subgroup of a group G, let gen(C) denote the set of all
its generators. It is clear that G is the disjoint union

G = | gen(C),

where C ranges over all the cyclic subgroups of G. We have just seen, when
G is cyclic of order n, that there is a unique cyclic subgroup C, of order d for
every divisor d of n. Therefore, n = |G| = ) 4,/gen(C,)|. In Exercise 2.20,
however, we saw that |gen(C,)| = ¢(d); the result follows. W

We now characterize finite cyclic groups.

Theorem 2.17. A group G of order n is cyclic if and only if, for each divisor d of
n, there is at most one cyclic subgroup of G having order d.

Proof. If G is cyclic, then the result is Lemma 2.15. For the converse, recall
from the previous proof that G is the disjoint union () gen(C), where C
ranges over all the cyclic subgroups of G. Hence, n = |G| =) |gen(C)| <
Y am®(d) = n, by Theorem 2.16. We conclude that G must have a cyclic sub-
group of order d for every divisor d of n; in particular, G has a cyclic sub-
group of order d = n, and so G is cyclicc. H

Observe that the condition in Theorem 2.17 is satisfied if, for every divisor
d of n, there are at most d solutions x € G of the equation x? = 1 (two cyclic
subgroups of order d would contain more than d solutions).

Theorem 2.18.
(1) If F is a field and if G is a finite subgroup of F*, the multiplicative group

of nonzero elements of F, then G is cyclic.
(i) If F is a finite field, then its multiplicative group F* is cyclic.
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Proof. If |G| = n and if a € G satisfies a? = 1, where d|n, then a is a root in F
of the polynomial x* — 1 € F[x]. Since a polynomial of degree d over a field
has at most d roots, our observation above shows that the hypothesis of
Theorem 2.17 is satisfied. Statement (ii) follows at once from (i). W

When F is finite, the proof does not construct a generator of F*. Indeed,
no algorithm is known which displays a generator of Z for all primes p.

Theorem 2.19. Let p be a prime. A group G of order p" is cyclic if and only if it
is an abelian group having a unique subgroup of order p.

Proof. Necessity follows at once from Lemma 2.15. For the converse, let
a € G have largest order, say p* (it follows that g?* =1 for all g € G). Of
course, the unique subgroup H of order p is a subgroup of <{a). If {a) is a
proper subgroup of G, then there is x € G with x ¢ {a) but with x? € {a); let

xP=a'. If k=1, then x? =1 and x € H < {a), a contradiction; we may,
therefore, assume that k > 1. Now
1= xpk - (xp)pk-x — alpk—x

>

so that | = pm for some integer m, by Exercise 2.13. Hence, x? = a™?, and so
1 = x"Pa™. Since G is abelian, x Pa™ = (x 'a™)?, and so x 'a™ e H < <a).
This gives x € {a), a contradiction. Therefore, G = {a) and hence is cyclic.

[ ]

EXERCISE

2.24. Let G = {4, B) < GL(2, C), where

0 i 0 1
A=|:i 0] and B—l:_1 0].

Show that G is a nonabelian group (so G is not cyclic) of order 8 having a unique
subgroup of order 2. (See Theorem 4.22)

Normal Subgroups

This brief section introduces the fundamental notion of normal subgroups.
We begin with a construction which generalizes that of cosets.

Definition. If S and T are nonempty subsets of a group G, then
={st:seSandte T}

IfS <G, teG,and T = {t}, then ST is the right coset St. Notice that the
family of all the nonempty subsets of G is a semigroup under this operation:
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if S, T, and U are nonempty subsets of G, then (ST)U = S(TU), for either side
consists of all the elements of G of the form (st)u = s(tu) with s € S, t € T, and
ueU.

Theorem 2.20 (Product Formula). If S and T are subgroups of a finite group
G, then
IST|IS A T| =S|I TI.

Remark. The subset ST need not be a subgroup.

Proof. Define a function ¢: S x T — ST by (s, t) > st. Since ¢ is a surjection,
it suffices to show that if x € ST, then |@ *(x)| = |Sn T|. We show that
0 1 (x) = {(sd,d"'t): d € S n T}. It is clear that ¢ '(x) contains the right side.
For the reverse inclusion, let (s, t), (o, 7)€ @' (x); that is, s,0€S,t,7€ T,
and st = x = ot. Thus, s lo = tt ' e SN T; let d = s"'¢ = tr~! denote their
common value. Then ¢ = s(s™'0) = sd and d "'t = tt7't = 1, as desired. W

There is one kind of subgroup that is especially interesting because it is
intimately related to homomorphisms.

Definition. A subgroup K < G is a normal subgroup, denoted by K < G, if
gKg™' = K forevery g € G.

If K < G and there are inclusions gKg ™ < K for every g € G, then K < G:
replacing g by g~!, we have the inclusion g7'Kg < K, and this gives the
reverse inclusion K < gKg™!.

The kernel K of a homomorphism f: G — H is a normal subgroup: if
ae K, then f(a) = 1;if g € G, then f(gag™) = f(9)f(a)f(9)" = f(9)f(9)' =
1, and so gag~! € K. Hence, gKg™* < K for all g€ G, and so K < G. Con-
versely, we shall see later that every normal subgroup is the kernel of some
homomorphism.

In Example 2.5, we saw that if H is the cyclic subgroup of S; generated by
the transposition 7 = (1 2), then there are right cosets of H which are not left
cosets. When K is normal, then every left coset of K in G is a right coset.
Indeed, a subgroup K of G is normal in G if and only if Kg = gK for every
g € G, for associativity of the multiplication of nonempty subsets gives K =
(Kg)g™! = gKg~'. In terms of elements, this says that there is a partial
commutativity when K < G: if g € G and k € K, then there exists k' € K with
ak = k’a. It may not be true that g commutes with every element of K. For
example, the reader should check that the cyclic subgroup K of S, generated
by the 3-cycle (1 2 3)is a normal subgroup. It follows that (1 2)K = K(1 2)
even though (1 2) does not commute with (1 2 3).

Normal subgroups are also related to conjugations 7y,: G —» G, where
7.(x) = axa™! (see Exercise 2.34 below).
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Definition. If x € G, then a conjugate of x in G is an element of the form axa™!

for some a € G; equivalently, x and y are conjugate if y = y,(x) for some
aeG.

For example, if k is a field, then matrices 4 and B in GL(n, k) are conjugate
if and only if they are similar.

EXERCISES

2.25.

2.26.

2.27.

2.28.

229

2.30.
2.31.

232
2.33.
2.34.

2.35.
2.36.
2.37.

If S is a subgroup of G, then SS = S; conversely, show that if S is a finite
nonempty subset of G with SS = §, then S is a subgroup. Give an example to
show that the converse may be false when S is infinite.

Let {S;: i e I} be a family of subgroups of a group G, let {S;t;: i € I} be a family
of right cosets, and let D = () §;. Prove that either () S;t; = & or () S;t; = Dg
for some g.

If S and T are (not necessarily distinct) subgroups of G, then an (S-T)-double
coset is a subset of G of the form SgT, where g € G. Prove that the family of all
(S-T)-double cosets partitions G. (Hint. Define an equivalence relation on G by
a=bifb=satforsomeseSandteT)

Let S, T < G, where G is a finite group, and suppose that G is the disjoint union
G= U Sg;T.
i=1

Prove that [G: T] = )", [S:Sng;Tg;i']. (Note that Lagrange’s theorem is
the special case of this when T = 1))

(i) (H. B. Mann). Let G be a finite group, and let S and T be (not necessarily
distinct) nonempty subsets. Prove that either G = ST or |G| > |S| + | T
(i) Prove that every element in a finite field F is a sum of two squares.

IfS<Gand[G:S]=2,then S < G.

If G is abelian, then every subgroup of G is normal. The converse is false: show
that the group of order 8 in Exercise 2.24 (the quaternions) is a counterexample.

If H < G, then H < G if and only if, for all x, y € G, xy € H if and only if yx € H.
IfK<H<Gand K <G, then K < H.

A subgroup S of G is normal if and only if s € § implies that every conjugate of
sis also in S. Conclude that if S < G, then S < G if and only if y(S) < S for every
conjugation y.

Prove that SL(n, k) < GL(n, k) for every n > 1 and every field k.
Prove that 4, < S, for every n.

(i) The intersection of any family of normal subgroups of a group G is itself a
normal subgroup of G. Conclude that if X is a subset of G, then there is a
smallest normal subgroup of G which contains X; it is called the normal
subgroup generated by X (or the normal closure of X it is often denoted by

<X59).
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(i) If X = &, then (X)¢ = 1. If X # (&, then {X>¢ is the set of all words on
the conjugates of elements in X.
(iii) If gxg~' € X for all x € X and g € G, then {X) = (XY¢ «G.

2.38. If H and K are normal subgroups of G, then H v K < G.

2.39. Prove that if a normal subgroup H of G has index n, then g" € H for all g € G.
Give an example to show this may be false when H is not normal.

Quotient Groups

The construction of the quotient group (or factor group) G/N in the next
theorem is of fundamental importance.

We have already seen that if X and Y are nonempty subsets of a group G,
then their product

XY={xy:xeXandyeVY}

defines an associative operation on the family of all nonempty subsets of G.
If H is a subgroup of G, then the family of all right cosets of H in G need not
be closed under this operation. In Example 2.5, we looked at the right cosets
of H = {(1 2))in S;. The product of right cosets

H(1 2 3)H(1 32)={1,(2 3),(1 2),(1 2 3)}

is not a right coset of H, for it has four elements while right cosets of H have
two elements. In the proof of the next theorem, we shall see that if H is a
normal subgroup, then the product of two right cosets of H is also a right
coset of H.

Theorem 2.21. If N < G, then the cosets of N in G form a group, denoted by
G/N, of order [G: N].

Proof. To define a group, one needs a set and an operation. The set here is
the family of all cosets of N in G (notice that we need not bother with the
adjectives “left” and “right” because N is a normal subgroup). As operation,
we propose the multiplication of nonempty subsets of G defined earlier. We
have already observed that this operation is associative. Now

NaNb = Na(a *Na)b (because N is normal)
= N(aa™!)Nab = NNab = Nab (because N < G).

Thus, NaNb = Nab, and so the product of two cosets is a coset. We let the
reader prove that the identity is the coset N = N 1 and that the inverse of Na

is N(a™'). This group is denoted by G/N, and the definition of index gives
|G/N|=[G:N]. &
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Corollary 2.22. If N < G, then the natural map (i.e., the function v: G - G/N
defined by v(a) = Na) is a surjective homomorphism with kernel N.

Proof. The equation v(a)v(b) = v(ab) is just the formula NaNb = Nab; hence,
v is a homomorphism. If Na € G/N, then Na = v(a), and so v is surjective.
Finally, v(a) = Na = N ifand only if a € N, by Lemma 2.8, so that N = ker v.

We have now shown that every normal subgroup is the kernel of some
homomorphism. Different homomorphisms can have the same kernel. For
example, if a=(1 2) and b= (1 3), then y,,7,: S; —» S; are distinct and
kery, =1 = ker y,.

The quotient group construction is a generalization of the construction of
Z, from Z. Recall that if n is a fixed integer, then [a], the congruence class of
a mod n, is the coset a + <{n). Now (n)> <1 Z, because Z is abelian, and the
quotient group Z/{n) has elements all cosets a + {n), where a € Z, and oper-
ation (a + <n)) + (b + {(n)) = a + b + (n); in congruence class notation,
[a] + [b] = [a + b]. Therefore, the quotient group Z/{n) is equal to Z,, the
group of integers modulo n. An arbitrary quotient group G/N is often called
G mod N because of this example.

Definition. If a, b € G, the commutator® of a and b, denoted by [a, b], is
[a, b] = aba™'b™".

The commutator subgroup (or derived subgroup) of G, denoted by G, is the
subgroup of G generated by all the commutators.

We shall see, in Exercise 2.43 below, that the subset of all commutators
need not be a subgroup (the product of two commutators need not be a
commutator).

Theorem 2.23. The commutator subgroup G’ is a normal subgroup of G. More-
over, if H < G, then G/H is abelian if and only if G' < H.

Proof. If f: G — G is a homomorphism, then f(G') < G’ because f([a, b]) =
[ fa, fb]. It follows from Exercise 2.34 that G' < G.

Let H < G. If G/H is abelian, then HaHb = HbHa for all a, b € G; that is,
Hab = Hba, and so ab(ba)™* = aba™*b™* = [a, b] € H. By Corollary 2.6, G’ <
H. Conversely, suppose that G' < H. For every a,b € G, ab(ba)™* =[a,b] e
G’ < H, and so Hab = Hba, that is, G/H is abelian. W

1 Those who write conjugates as b™'ab write commutators as a~'b™"ab.
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EXERCISES

2.40. Let H < G, let v: G —» G/H be the natural map, and let X < G be a subset such
that v(X) generates G/H. Prove that G = (H U XD.

2.41. Let G be a finite group of odd order, and let x be the product of all the elements
of G in some order. Prove that x € G'.

242 (P.Yff). For any group G, show that G’ is the subset of all “long commutators™:
G = {a,a,...a,a7'a;"...a;": a;€ Gand n > 2}.
(Hint (P.M. Weichsel).
(aba™'b7')(cdc™'d™") = a(ba*)b"'c(dc ™ )d 'a ! (a b~1)bc(cd 1)d.)

2.43. The fact that the set of all commutators in a group need not be a subgroup is an
old result; the following example is due to P.J. Cassidy (1979).
(i) Let k[x, y] denote the ring of all polynomials in two variables over a field
k, and let k[x] and k[ y] denote the subrings of all polynomials in x and in
y, respectively. Define G to be the set of all matrices of the form

1 f(x) h(x,y)
A=(0 1 gy |,
0 0 1

where f(x) € k[x], g(y) € k[y], and h(x, y) € k[x, y]. Prove that G is a
multiplicative group and that G’ consists of all those matrices for which
fx)=0= g(y) (Hint. If A is denoted by (f, g, h), then (f, g, h)(f', g', h') =
(f+f9+g, h+h +fg')Ifh=h(xy) =) a;x'y), then

(0’ 01 h) = H [(aijx > 07 0)5 (05 yJ! 0)])

(i) If (0, 0, h) is a commutator, then there are polynomials f(x), f'(x) € k[x]
and g(y), g'(y) € k[y] with h(x, y) = f(x)g"(y) — f'(x)g(»)-

(iii) Show that h(x, y) = x* + xy + y* does not possess a decomposition as
in part (ii), and conclude that (0 0, h) € G’ is not a commutator. (Hint. If
fx) =Y bx'and f'(x) = Y. ¢;x’, then there are equatlons

bog'(y) — cog(y) =
big'(y) — c19(y) =y,
byg'(y) — c29(y) = L.

Considering k[x, y] as a vector space over k, one obtains the contradiction
that the independent set {1, y, y*} is in the subspace spanned by {g, g'}.)

Remark. With a little ring theory, one can modify this construction to
give a finite example. If k = Z, and k[x, y] is replaced by its quotient ring
k[x, y]/I, where I is the ideal generated by {x3, y, x%y, xy*}, then the cor-
responding group G has order p'2. Using the computer language CAYLEY
(now called MAGMA), I found that the smallest group in which the prod-
uct of two commutators is not a commutator has order 96. There are
exactly two such groups: in CAYLEY notation, they are library g96n197
and library g96n201; in each of these groups, the commutator subgroup has
order 32 while there are only 29 commutators.
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There is an explicit example in [Carmichael, p. 39] of a group G < S,
(generated by eight permutations) with |G| = 256, |G’| = 16, and with a
specific element of G’ which is not a commutator.

The Isomorphism Theorems

There are three theorems, formulated by E. Noether, describing the relation-
ship between quotient groups, normal subgroups, and homomorphisms. A
testimony to the elementary character of these theorems is that analogues of
them are true for most types of algebraic systems, e.g., groups, semigroups,
rings, vector spaces, modules, operator groups.

Theorem 2.24 (First Isomorphism Theorem). Let f: G — H be a homomor-
phism with kernel K. Then K is a normal subgroup of G and G/K = im f.

Proof. We have already noted that K < G. Define ¢: G/K — H by

¢(Ka) = f(a).

To see that ¢ is well defined, assume that Ka = Kb; that is, ab™! € K. Then
1 = f(ab™') = f(a)f(b)~}, and f(a) = f(b); it follows that ¢(Ka) = ¢(Kb), as
desired. Now ¢ is a homomorphism:

@(KaKb) = ¢(Kab) = f(ab) = f(a)f(b) = ¢(Ka)p(Kb).

It is plain that im ¢ = im f. Finally, we show that ¢ is an injection. If p(Ka) =
@(Kb), then f(a) = f(b); hence f(ab™') =1, ab™' € K, and Ka = Kb (note
that ¢ being an injection is the converse of ¢ being well defined). We have
shown that ¢ is an isomorphism. W

It follows that there is no significant difference between a quotient group
and a homomorphic image.

If v: G > G/K is the natural map, then the following “commutative dia-
gram” (i.e., f = ¢ o v) with surjection v and injection ¢ describes the theorem:

f

G— H
N\ A
G/K

It is easy to describe ¢ ':im f — G/K: if x € im f, then there exists ae G
with f(a) = x, and ¢~!(x) = Ka. The reader should check that ¢! is well
defined; that is, if f(b) = x, then Ka = Kb.

Given a homomorphism f, one must always salivate, like Pavlov’s dog, by
asking for its kernel and image; once these are known, there is a normz'il
subgroup and f can be converted into an isomorphism. Let us illustrate this
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by solving Exercise 2.19: If G = {g) and H = {h) are cyclic groups of order
n, then G = H. Define a homomorphism f: Z — G by f(k) = g*. It is easy to
see that f'is a surjection, while Exercise 2.13 shows that ker f = {(n). The first
isomorphism theorem gives Z/<{n) = G. Similarly, Z/{n) =~ H,and so G = H.
Since Z/{n) = Z,, every cyclic group of order n is isomorphic to Z,,.

Lemma 2.25. If S and T are subgroups of G and if one of them is normal, then
ST=Sv T=TS.

Proof. Recall that ST is just the set of all products of the form st, where s € S
and t € T; hence ST and TS are subsets of S v T containing S U T. If ST and
TS are subgroups, then the reverse inclusion will follow from Corollary 2.6.
Assume that T' < G. If s,¢, and s,t, € ST, then

(5121)(s222) 7" = syt423 753"
= 5,(s3'82)t,157s3"
=5,5;'t;
= (s153')t; € ST,

where t3 = s,(t,t5')s;' € T because T <1 G. Therefore, ST =S v T. A simi-
lar proof shows that T'S is a subgroup,andso TS=Sv T=ST. W

Suppose that § < H < G are subgroups with S < G. Then S < H and the
quotient H/S is defined; it is the subgroup of G/S consisting of all those cosets
Sh with h e H. In particular, if S <G and T is any subgroup of G, then
S < ST < G and ST/S is the subgroup of G/S consisting of all those cosets
Sst, where st € ST. Since Sst = St, it follows that ST/S consists precisely of all
those cosets of S having a representative in T.

Recall the product formula (Theorem 2.20): If S, T < G, then |ST||SN T| =

ISIIT]; equivalently, |T|/|S~ T|=|ST|/|S|. This suggests the following
theorem.

Theorem 2.26 (Second Isomorphism Theorem). Let N and T be subgroups of
G with N normal. Then N N T is normal in T and T/(N A T) =~ NT/N.

Remark. The following diagram is a mnemonic for this theorem:

PN
N
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Proof. Let v: G — G/N be the natural map, and let v/ = v| T, the restriction of
v to T. Since v' is a homomorphism whose kernel is N n T, Theorem 2.24
gives NN T < T and T/(N n T) = im v'. Our remarks above show that im v'
is just the family of all those cosets of N having a representative in T; that is,
im v' consists of all the cosets in NT/N. W

Theorem 2.27 (Third Isomorphism Theorem). Let K < H < G, where both K
and H are normal subgroups of G. Then H/K is a normal subgroup of G/K and

(G/K)/(H/K) = G/H.

Proof. Again we let the first isomorphism theorem do the dirty work. Define
f:G/K - G/H by f(Ka) = Ha (this “enlargement of coset” map f is well

defined because K < H). The reader may check easily that f is a surjection
with kernel H/K. W

Imagine trying to prove the third isomorphism theorem directly; the ele-
ments of (G/K)/(H/K) are cosets whose representatives are cosets!

EXERCISES

2.44. Prove that a homomorphism f: G — H is an injection if and only if ker f = 1.

2.45. (i) Show that the 4-group V is a normal subgroup of S,. (We shall do this more
efficiently in the next chapter.)

(i) If K = <(1 2)(3 4)), show that K < V but that K is not a normal subgroup
of S,. Conclude that normality need not be transitive; that is, K < H and
H < G need not imply K < G.
2.46. Let N < G and let f: G » H be a homomorphism whose kernel contains N.
Show that f induces a homomorphism f,: G/N — H by f,(Na) = f(a).

247. If S, T < G, then ST is a subgroup of G if and only if ST = TS.
2.48 (Modular Law). Let 4, B, and C be subgroups of G with A<B. If AnC =

B~ C and AC = BC (we do not assume that either AC or BC is a subgroup),
then A = B.

249 (Dedekind Law). Let H, K, and L be subgroups of G with H < L. Then
HK L = H(K n L) (we do not assume that either HK or H(K n L) is a sub-
group).

2.50. Let f: G — G* be a homomorphism and let S* be a subgroup of G*. Then
£71(8*) = {x € G: f(x) € $*} is a subgroup of G containing ker f.

Correspondence Theorem

The theorem in this section should be called the fourth isomorphism theo-
rem. Let X and X* be sets. A function f: X — X* induces a “forward
motion” and a “backward motion” between subsets of X and subsets of X*.
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The forward motion assigns to each subset S < X the subset f(S)=
{f(s): s € S} of X*; the backward motion assigns to each subset S* of X* the
subset f71(S*) = {x € X: f(x) € S*} of X. Moreover, if f is a surjection, these
motions define a bijection between all the subsets of X* and certain subsets
of X. The following theorem is the group-theoretic version of this.

Theorem 2.28 (Correspondence Theorem). Let K < G and let v: G — G/K be
the natural map. Then S +— v(S) = S/K is a bijection from the family of all
those subgroups S of G which contain K to the family of all the subgroups
of G/K.

Moreover, if we denote S/K by S*, then:

() T<Sifandonlyif T* < S* and then [S: T] = [S*: T*]; and
(i) T < Sif and only if T* < S*, and then S/T = S*/T*.

Remark. A mnemonic diagram for this theorem is:

e
AN

S/K

/

S*

T/K = T*

e
AN

1

N\

Proof. We show first that S — S/K is an injection: if S and T are subgroups
containing K, and if S/K = T/K, then S = T. To see this, let s € S; since
S/K = T/K, there exists t € T with Ks = Kt. Hence, s = kt for some ke K <
T and s € T. The reverse inclusion is proved similarly. To see that the corre-
spondence S — §/K is a surjection, we must show that if 4 < G/K, then
there is a subgroup S of G containing K with 4 = S/K. By Exercise 2.50,
S = v7'(A) is a subgroup of G containing K; moreover, that v is a surjection?
implies that S/K = v(S) = w™(4) =

It is plain that if K < T < §, then T/K < S/K. To prove that [S: T] =
[S*: T*], it suffices to show that there is a bijection from the family of all
cosets of the form Ts, where s € S, to the family of all cosets T*s*, where
s* € §*. The reader may check that «, defined by a: Ts — T*v(s), is such a

2If f: X — X*isafunction and A = X*, then ff ~!(4) < 4; if f is a surjection, then ff ~1(4) =
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bijection. (If G is finite, then we may prove [S: T] = [S*: T*] as follows:
[S*: T*]=|S*|/\T*| = |S/K|/|T/K|

= (ISI/IKDATIK]) = |SINT| =[S:T])

If T<S, then the third isomorphism theorem gives T/K < S/K and
(S/K)/(T/K) = S/K; that is, T* <S* and S*/T* = S/T. It remains to
show that if T* <« S* then T <S. The reader may verify that T =
ker uvy: S — S*/T*, where v, = v|S and u: S* - S*/T* is the natural map.

|

EXERCISES

2.51. If G’ < H < G, where G’ is the commutator subgroup of G, then H < G and
G/H is abelian.

2.52. Give an example to show that if H < G, then G need not contain a subgroup
isomorphic to G/H.

2.53. Prove that the circle group T is isomorphic to R/Z.

2.54. (1) Let H,K <G.If(|H|,|K|)=1,then HNK = 1.
(i) Let G be a finite group, and let H be a normal subgroup with (|H|, [G: H]) =
1. Prove that H is the unique subgroup of order |H| in G. (Hint: If K is
another such subgroup, what happens to K in G/H?)

2.55 (Zassenhaus). Let G be a finite group such that, for some fixed integer n > 1,
(xyy' = x"y"forall x y € G. If G[n] = {z € G: z" = 1} and G" = {x™ x € G}, then
both G[n] and G" are normal subgroups of G and |G"| = [G: G[n]].

2.56. A subgroup H < G is a maximal normal subgroup of G if there is no normal
subgroup N of G with H < N < G. Prove that H is a maximal normal subgroup
of G if and only if G/H has no normal subgroups (other than itself and 1).

Definition. A group G # 1 is simple if it has no normal subgroups other than
Gand 1.

We may restate Exercise 2.56: H is a maximal normal subgroup of G if and
only if G/H is simple.

2.57. An abelian group is simple if and only if it is finite and of prime order.

2.58. Let M be a maximal subgroup of G; that is, there is no subgroup S with M <
S < G. Prove that if M < G, then [G : M] is finite and equal to a prime

2.59 (Schur). Let f: G — H be a homomorphism that does not send every element of
G into 1. If G is simple, then f must be an injection.
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Direct Products

Definition. If H and K are groups, then their direct product, denoted by
H x K, is the group with elements all ordered pairs (h, k), where he H and
k € K, and with operation

(h, k)(R', k") = (hh', KK').

It is easy to check that H x K is a group: the identity is (1, 1); the inverse
(h, k) 'is (h™%, k~1). Notice that neither H nor K is a subgroup of H x K, but
H x K does contain isomorphic replicas of each, namely, H x 1 = {(h, 1.
heH}and 1 x K = {(1,k): ke K}.

EXERCISES

2.60. (i) Show that(h,1)e H x 1 and (1, k) € 1 x K commute.
(i) H x 1and 1 x K are normal subgroups of H x K.
(i) (H x 1)n(1 x K)=1and (H x 1)(1 x K)=H x K.

2.61. H x K is abelian if and only if both H and K are abelian.

2.62. (i) Provethat Zg =~ Z, x Z;.

(ii) If (m,n)=1, then Z,,=~7Z, x Z,. (Hint. Use the Chinese Remainder
Theorem).

2.63. If pis a prime, prove that 7. £ 7, x Z,,.

2.64. Let u: G x G — G be the operation on a group G; that is, u(a, b) = ab. If G x G

is regarded as the direct product, prove that u is a homomorphism if and only
if G is abelian.

2.65. Let A be an abelian group, and let «: H - 4 and f: K - A be homomorphisms.
Prove that there exists a unique homomorphism y: H x K — A4 with y(h, 1) =

a(h) for all h e H and y(1, k) = B(k) for all k € K. Show that this may be false if
A is not abelian.

We now take another point of view. It is easy to multiply two polynomials
together; it is harder to factor a given polynomial. We have just seen how to
multiply two groups together; can one factor a given group?

Theorem 2.29. Let G be a group with normal subgroups H and K. If HK = G
and HNK = 1,then G =~ H x K.

Proof. If a € G, then a = hk for some h € H and k € K (because G = HK). We
claim that h and k are uniquely determined by a. If a = h k, for h, € H and
k, € K, then hk = h;k; and h™*h; = kk;'e HNK = 1; hence h = h, and
k = kl'

Define f: G - H x K by f(a) = (h, k), where a = hk. Is f a homomorphism?
If a = hk and a’ = h'k’, then aa’ = hkh'k’ which is not in the proper form
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for evaluating f. Were it true that kh’ = h'k, however, then we could eval-
uate f(aa’). Consider the commutator h'kh’~*k™!. Now (h'kh’1)k™! € K (for
h'kh'™! € K because K is normal), and, similarly, h'(kh’'k™*) e H (because H
is normal); therefore, h'kh' k' e HAK =1 and h’ and k commute. The

reader can now check that f is a homomorphism and a bijection; that is, f is
an isomorphism. W

We pause to give an example showing that all the hypotheses in Theorem
2.29 are necessary. Let G = S5, H = {(1 2 3)),and K = {(1 2)>. Itis easy to
see that HK = G and H n K = 1; moreover, H < G but K is not a normal
subgroup. The direct product H x K = Z, x Z, is abelian, and so the non-
abelian group G = S; is not isomorphic to H x K.

Theorem 2.30. If A << H and B < K, then A x B <1 H x K and
(H x K)/(A x B)~ (H/A) x (K/B).

Proof. The homomorphism ¢: H x K — (H/A) x (K/B), defined by ¢(h, k) =
(Ah, Bk), is surjective and ker ¢ = 4 x B. The first isomorphism theorem
now gives the result. W

It follows, in particular, that if N <« H, then N x 1 < H x K.
Corollary 2.31. If G = H x K, then G/(H x 1) = K.

There are two versions of the direct product H x K: the external version,
whose elements are ordered pairs and which contains isomorphic copies of
H and K (namely, H x 1 and 1 x K); the internal version which does contain
H and K as normal subgroups and in which HK = G and Hn K = 1. By
Theorem 2.29, the two versions are isomorphic. In the future, we shall not
distinguish between external and internal; in almost all cases, however,
our point of view is internal. For example, we shall write Corollary 2.31 as
(H x K)/H = K.

EXERCISES

2.66. Provethat V=17, x Z,.

2.67. Show that it is possible for a group G to contain three distinct normal sub-
groups H, K, and L such that G = H x L = K x L;thatis, HL = G = KL and
HnL=1=KnL.(Hint: Try G = V).

2.68. Prove that an abelian group G of order p?, where p is a prime, is either cyclic or
isomorphic to Z, x Z,. (We shall see in Corollary 4.5 that every group of order
p? must be abelian).

2.69. Let G be a group with normal subgroups H and K. Prove that HK = G and
H K = 1if and only if each a € G has a unique expression of the form a = hk,
where he H and k € K.
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2.70.

271

2.72.

2.73.

2.74.

2.75.

2.76.

2.71.
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If N < H x K, then either N is abelian or N intersects one of the factors H or
K nontrivially.

Give an example of an abelian group H x K which contains a nontrivial sub-
group N such that Nn H =1 = N n K. Conclude that it is possible that N <
H x K and N # (N n H) x (N n K).

Let G be a group having a simple subgroup H of index 2. Prove that either H is
the unique proper normal subgroup of G or that G contains a normal subgroup
K of order 2 with G = H x K. (Hint. Use the second isomorphism theorem.)

Let 0 denote the trivial homomorphism which sends every element to the iden-
tity. Prove that G = H x K if and only if there exist homomorphisms

H5GAK and K35G3H

with gi = 1 (the identity function on H), pj= 14, pi=0, ¢gj=0, and
(ioq)(x)(jop)(x)=xforall xeG.

The operation of direct product is commutative and associative in the following
sense: for groups H, K, and L,

HxK=>~KxH and Hx(KxL)~(HxK)x L.
Conclude that the notations Hy x -+ x H, and [[/-, H; are unambiguous.

Let G be a group having normal subgroups H,, ..., H,.

) ¥ G=<Ji-H)> and, for all j, 1=Hn{J;H then G=
H, x--x H,.

(ii) If each a € G has a unique expression of the form a = h, ... h,, where each
h;e H,thenG~ H; x --- x H,.

Let Hy,...,H, be normal subgroups of a group G, and define

¢:G—>G/H| x - x G/H, by ¢(x) = (H,x, ..., H,x).

(i) Prove thatker ¢ = Hy n---n H,.

(ii) If each H; has finite index in G and if (|G/H,|, |G/H;]) = 1 for all i # j, then ¢
is a surjection and

[G:H,n---nH] =] |G/H].
i=1i

Let V be an n-dimensional vector space over a field F. Prove that, as abelian
groups, V= F, x --- x F,, where F;  F for all i.

Definition. If p is a prime, then an elementary abelian p-group is a finite group
G isomorphicto Z, x -+ x z,.

2.78.

Prove that if G is an abelian group of prime exponent p, then G is a vector
space over Z,, and every homomorphism ¢ : G — G is a linear transformation.

Moreover, a finite abelian p-group G is elementary if and only if it has expo-
nent p.



CHAPTER 3

Symmetric Groups and G-Sets

The definition of group arose from fundamental properties of the symmetric
group S,. But there is another important feature of S, its elements are func-
tions acting on some underlying set, and this aspect is not explicit in our

presentation so far. The notion of G-set is the appropriate abstraction of this
idea.

Conjugates

In this section we study conjugates and conjugacy classes for arbitrary groups;
in the next section, we consider the special case of symmetric groups.

Lemma 3.1. If G is a group, then the relation “y is a conjugate of x in G,” that
is, y = gxg~! for some g € G, is an equivalence relation.

Proof. Routine. W

Definition. If G is a group, then the equivalence class of a € G under the
relation “y is a conjugate of x in G” is called the conjugacy class of a; it is
denoted by a®.

Of course, the conjugacy class a€ is the set of all the conjugates of a in G.
Exercise 2.34 can be rephrased: a subgroup is normal if and only if it is a
(disjoint) union of conjugacy classes. If a and b are conjugate in G, say, b =
gag~!, then there is an isomorphism y: G — G, namely, conjugation by g,
with y(a) = b. It follows that all the elements in the same conjugacy class have
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the same order. In particular, for any two elements x, y € G, the elements xy
and yx have the same order.

If a € G is the sole resident of its conjugacy class, then a = gag™* for all
g € G; that is, a commutes with every element of G.

Definition. The center of a group G, denoted by Z(G), is the set of allae G
that commute with every element of G.

It is easy to check that Z(G) is a normal abelian subgroup of G.
The following subgroup is introduced to count the number of elements in
a conjugacy class.

Definition. If a € G, then the centralizer of a in G, denoted by C(a), is the set
of all x € G which commute with a.

It is immediate that C4(a) is a subgroup of G.

Theorem 3.2. If a € G, the number of conjugates of a is equal to the index of
its centralizer:
la®| = [G: Cg(a)],

and this number is a divisor of |G| when G is finite.

Proof. Denote the family of all left cosets of C = C4(a) in G by G/C, and
define f: a® — G/C by f(gag™') = gC. Now f is well defined: if gag™* = hah™*
for some h € G, then h™'gag™'h = a and h™'g commutes with g; that is, h g €
C, and so hC = gC. The function f is an injection: if gC = f(gag™?) =
f(kak™') = kC for some ke G, then k'ge C, k'g commutes with a,
k~*gag 'k = a, and gag™! = kak™!; the function f is a surjection: if g € G,
then gC = f(gag™'). Therefore, f is a bijection and |a®| =|G/C|=
[G: Cg(a)]. When G is finite, Lagrange’s theorem applies. W

One may conjugate subgroups as well as elements.

Definition. If H < G and g € G, then the conjugate gHg™" is {ghg™: h e H}.
The conjugate gHg ™! is often denoted by HY.

The conjugate gHg ™! is a subgroup of G isomorphic to H: if Y: G- G is
conjugation by g, then y,|H is an isomorphism from H to gHg ™.

Note that a subgroup H is a normal subgroup if and only if it has only one
conjugate.

Definition. If H < G, then the normalizer of H in G, denoted by N4 (H), is
Ng(H) = {ae G:aHa™" = H}.



Conjugates 45

It is immediate that Ng(H) is a subgroup of G. Notice that H < Ng(H);
indeed, Ng(H) is the largest subgroup of G in which H is normal.

Theorem 3.3. If H < G, then the number ¢ of conjugates of H in G is equal to
the index of its normalizer: ¢ = [G : N¢(H)], and c divides |G| when G is finite.
Moreover, aHa™ = bHb™" if and only if b™'a € N,4(H).

Proof. Let [H] denote the family of all the conjugates of H, and let G/N
denote the family of all left cosets of N = Ng(H) in G. Define f: [H] - G/N
by f(aHa™) = aN. Now f is well defined: if aHa™* = bHb™" for some b e G,
then b~'aHa™'b = H and b~'a normalizes H; that is, b 'ae N, and so
bN = aN. The function f is an injection: if aN = f(aHa™') = fcHe™) =
cN for some c € G, then c*a e N, ¢™'a normalizes H, ¢~ 'aHa ¢ = H, and
aHa™ = cHc™"; the function f is a surjection: if a € G, then aN = f(aHa™).
Therefore, f is a bijection and |[[H]| = |G/N| = [G: Ng(H)]. When G is finite,
Lagrange’s theorem applies. W

The strong similarity of Theorems 3.2 and 3.3 will be explained when we
introduce G-sets.

EXERCISES

3.1. (i) A group G is centerless if Z(G) = 1. Prove that S, is centerless if n > 3.
(ii) Prove that A, is centerless.

3.2. Ifa € S, is an n-cycle, then its centralizer is (o).
3.3. Prove that if G is not abelian, then G/Z(G) is not cyclic.

34. (i) A finite group G with exactly two conjugacy classes has order 2.

(ii) Let G be a group containing an element of finite order n > 1 and exactly two
conjugacy classes. Prove that |G| = 2. (Hint. There is a prime p with a? = 1
for all ae G. If p is odd and a € G, then a? = xax™! for some x, and so
a? = xPax? = a; thus, 27 = 1 mod p, contradicting Fermat’s theorem.)

(There are examples of infinite groups G with no elements of finite order which
do have exactly two conjugacy classes.)

3.5. Prove that Z(G, x - x G,) = Z(G,) x - x Z(G,).
3.6. (i) Prove, for every a, x € G, that Cg(axa™) = aCg(x)a™.
(1) Prove that if H < G and h € H, then Cy(h) = C4z(h) n H.

3.7. Let G be a finite group, let H be a normal subgroup of prime index, apd let
x € H satisfy Cy(x) < Cq4(x). If y € H is conjugate to x in G, then y is conjugate
to x in H.

3.8. Ifa,, ..., a, is a list of (not necessarily distinct) elements of a group G, then, for
alli, a;...a,a, ...a;_, is conjugate to a, ...a,.

39. (i) Prove that Ng(aHa™') = aNg(H)a™".
(i) If H < K < G, then Ng(H) = Ng(H)n K.
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(i) If H, K < G, prove that Ng(H) n Ng(K) < Ng(H N K). Give an example in
which the inclusion is proper.

3.10. If f: G — H is surjective and 4 < Z(G), then f(A) < Z(H).

3.11. If H < G, then Ng(H) < {ae G:aHa™* < H}; when H is finite, then there is
equality. (There are examples of infinite subgroups H < G with aHa™! < H for
some a € G).

Definition. An n x n matrix M = [m;;] over a field K is monomial if there is
« € S, and (not necessarily distinct) nonzero elements x;, ..., x, € K such that

xi lf .] = a(i)9
m.. = .
Y 0 otherwise.

Monomial matrices thus have only one nonzero entry in any row or col-
umn. Of course, a monomial matrix in which each x; = 1 is a permutation
matrix over K. (This definition will be generalized when we discuss wreath
products.)

3.12. (i) Let k be a field with more than two elements. If G = GL(n, k) and T is the
subgroup of G of all diagonal matrices, then Ng(T') consists of all the
monomial matrices over k.

(i) Prove that Ng(T)/T = §,.

3.13. (i) If H is a proper subgroup of a finite group G, then G is not the union of all
the conjugates of H.
(ii) If G is a finite group with conjugacy classes C,, ..., C,, and if g; € C;, then
G={g1s - sGmr-

Symmetric Groups

Definition. Two permutations a, § € S, have the same cycle structure if their

complete factorizations into disjoint cycles have the same number of r-cycles
for each r.

Lemma 34. If o, f € S,, then afa”" is the permutation with the same cycle
structure as f§ which is obtained by applying « to the symbols in B.

ExampLE 3.1. If B=(13)2 4 7) and a=(2 5 6)(1 4 3), then afa™! =
(@l a3)(@2 a4 a7)=4 1)(5 3 7).

Proof. Let © be the permutation defined in the lemma. If f fixes a symbol i,
then 7 fixes a(i), for a(i) resides in a 1-cycle; but afo(x(i)) = af(i) = a(i),
and so afa! fixes a(i) as well. Assume that B moves i; say, f(i) = j. Let the
complete factorization of § be



Symmetric Groups 47

If a(i) = k and a(j) =1, then m: k> . But afat: ks i —j+ I and so
afo* (k) = m(k). Therefore, = and afa~' agree on all symbols of the form
k = a(i); since o is a surjection, it follows that & = afo”. W

Theorem 3.5. Permutations «, B € S, are conjugate if and only if they have the
same cycle structure.

Proof. The lemma shows that conjugate permutations do have the same cycle
structure. For the converse, define y € S, as follows: place the complete fac-
torization of a over that of § so that cycles of the same length correspond,
and let y be the function sending the top to the bottom. For example, if

a=p;yp (o ij "')"'Vn
B=0,0,( kI )6,
then y(i) = k, y(j) = |, etc. Notice that y is a permutation, for every i between

1 and n occurs exactly once in a complete factorization. The lemma gives
yay~! = B, and so « and f are conjugate. W

EXAMPLE 3.2. If
a=(2 3 1)4 5)(6),

B=(5 623 1)@),

then » — 123456
"“2s56314
example, the 3-cycle in « could also be written (1 2 3), and the “downward”

permutation is now y’ = (1 5)(2 6 4 3). The multiplicity of choices for 7y is
explained by Theorem 3.2.

) =(1 2 5)(3 6 4). Notice that y is not unique; for

Corollary 3.6. A subgroup H of S, is a normal subgroup if and only if, whenever
o € H, then every f having the same cycle structure as « also lies in H.

Proof. By Exercise 2.34, H < §, if and only if H contains every conjugate of
its elements. W

The solution of Exercise 2.45(i), which states that V < S,, follows from the
fact that V contains all products of disjoint transpositions.

If 1<r<n, then Exercise 1.5 shows that there are exactly
(1/r)[n(n —1)---(n — r + 1)] distinct r-cycles in S,. This formula can be used
to compute the number of permutations having any given cycle structure if
one is careful about factorizations with several factors of the same length. For
example, the number of permutations in S, of the form (a b)(c d) is

(@4 x3)2x(2x1)/2]=3,

the factor  occurring so that we do not count (a b)(c d) = (c d)(a b) twice.
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S4
Cycle Structure ~ Number Order  Parity
(1) 1 1 Even
(12) 6=(4x3)2 2 Odd
(123) 8=(4x3x2)/3 3 Even
(1234) 6=41/4 4 Odd
1/4x3 2x1
= |—x—F 2 Eve
(12)(34) 3 2( 5 X —5 ) n
24 = 4!
Table 3.1

Let us now examine S, using Table 3.1. The 12 elements of 4, are eight
3-cycles, three products of disjoint transpositions, and the identity. These ele-
ments are the 4-group V together with

(12 3y 132 2 3 4 2 4 3)
3 4 1) 31 4 412 4 21).
We can now see that the converse of Lagrange’s theorem is false.
Theorem 3.7. A, is a group of order 12 having no subgroup of order 6.
Proof (T.-L. Sheu). If such a subgroup H exists, then it has index 2, and so

Exercise 2.16 gives a? € H for every a € A,. If a is a 3-cycle, however, then
o = a* = («?)?, and this gives 8 elements in H, a contradiction. W

EXERCISES
3.14. (i) If the conjugacy class of x € G is {ay, ..., a,}, then the conjugacy class of x™*
is {ar’, ..., a;'}.

(i) If « € S,, then « is conjugate to o™

3.15. A, is the only subgroup of S, having order 12.
Definition. If n is a positive integer, then a partition of n is a sequence of
integers 1 <i; <i, <--<i,with) i;=n.

3.16. Show that the number of conjugacy classes in S, is the number of partitions of n.

3.17. If n < m, then A, can be imbedded in A, (as all even permutations fixing {n + 1,

., m}).
3.18. Verify the entries in Table 3.2.
3.19. Verify the entries in Table 3.3.



Ss

Cycle Structure Number Order Parity
(1) 1 1 Even
(12) 10 = (5 x 4)/2 2 Odd
(123) 20 =(5 x 4 x 3)/3 3 Even
(1234) 30=(5x4x3x2)/4 4 Odd
(12345) 24 = 5!/5 5 Even
1/5x4 3x2
12)(34 15=_| - x— =
(1234) 2<2x2) 2 Even
S5x4
(123)(45) 20 = %—’(—3 %2 ; L' 6 oad
120 = 5!
As
Cycle Structure  Number Order Parity
1) 1 1 Even
(123) 20 3 Even
(12345) 24 5 Even
(12)(34) 15 2 Even
60
Table 3.2
Se
Cycle Structure  Number Order Parity
(O 1) 1 1 Even
c, (12 15 2 Odd
C, (123) 40 3 Even
C, (1234) 90 4 Odd
Cs  (12345) 144 5 Even
Ce  (123456) 120 6 Odd
C, (12)(34) 45 2 Even
Cs  (12)(345) 120 6 Odd
Cy  (12)(3456) 90 4 Even
C,o (12)(34)(56) 15 2 0Odd
C,; (123)(456) 40 3 Even
720 = 6!
As
Cycle Structure  Number  Order Parity
1) 1 1 Even
(123) 40 3 Even
(12345) 144 5 Even
(12)(34) 45 2 Even
(12)(3456) 90 4 Even
(123)(456) 40 3 Even
360

Table 3.3
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The Simplicity of 4,

We are going to prove that A, is simple for all n > 5. The alternating group
A, is not simple, for it contains a normal subgroup, namely, V.

Lemma 3.8. A, is simple.

Proof. (i) All 3-cycles are conjugate in As.(We know that this is true in S, but
now we are allowed to conjugate only by even permutations.)

If, for example, « = (1 2 3), then the odd permutation (4 5) commutes
with o. Since A5 has index 2 in Ss, it is a normal subgroup of prime index, and
so Exercise 3.7 says that o has the same number of conjugates in 4 as it does
in S5 because C, () < Cg, ().

(ii) All products of disjoint transpositions are conjugate in As.

If, for example, o = (1 2)(3 4), then the odd permutation (1 2) commutes
with o. Since A5 has index 2 in Ss, Exercise 3.7 says that « has the same
number of conjugates in 4 as it does in S;.

(iiiy There are two conjugacy classes of 5-cycles in As, each of which has 12
elements.

In S5, « = (1 2 3 4 5) has 24 conjugates, so that Cs («) has 5 elements;
these must be the powers of a. By Exercise 3.2, C, (x) has order 5, hence,
index 60/5 = 12.

We have now surveyed all the conjugacy classes occurring in As. Since
every normal subgroup H is a union of conjugacy classes, |H| is a sum of 1
and certain of the numbers: 12, 12, 15, and 20. It is easily checked that no
such sum is a proper divisor of 60, so that |H| = 60 and A4 is simple. W

Lemma 3.9. Let H < A,, where n > 5. If H contains a 3-cycle, then H = A,

Proof. We show that (1 2 3)and (i j k) are conjugate in 4, (and thus that all
3-cycles are conjugate in A4,). If these cycles are not disjoint, then each fixes
all the symbols outside of {1, 2, 3, i, j}, say, and the two 3-cycles lie in A*, the
group of all even permutations on these 5 symbols. Of course, 4* =~ A, and,
as in part (i) of the previous proof, (1 2 3) and (i j k) are conjugate in A*; a
fortiori, they are conjugate in A4,,. If the cycles are disjoint, then we have just
seen that (1 2 3) is conjugate to (3 j k) and that (3 j k) is conjugate to
(i j k), so that (1 2 3)is conjugate to (i j k) in this case as well.

A normal subgroup H containing a 3-cycle & must contain every conjugate
of «; as all 3-cycles are conjugate, H contains every 3-cycle. But Exercise 2.7
shows that A, is generated by the 3-cycles,andso H =4,. A
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Lemma 3.10. 4 is simple.

Proof. Let H # 1 be a normal subgroup of A, and let o« € H be distinct from
1. If « fixes some i, define

F={BeAg i) =i).

Now F~ A;and ae HNF. Bt HAF < F, by the second isomorphism
theorem, so that F simple and HN F # 1 give HN F = F; that is, F< H.
Therefore, H contains a 3-cycle, H = A4 (by the lemma), and we are done.

We may now assume that no o € H with a # 1 fixes anyiforl <i<6. A
glance at Table 3.3 shows that the cycle structure of « is either (12(34506)
or (1 2 3)(4 5 6). In the first case, a® € H, o # 1, and o fixes 1 (and 2), a
contradiction. In the second case, H contains «(fa 1), where = (2 3 4),
and it is easily checked that this element is not the identity and it fixes 1, a
contradiction. Therefore, no such normal subgroup H can exist. W

Theorem 3.11. A, is simple for alln > 5.

Proof. Let n> 5 and let H # 1 be a normal subgroup of A, If fe H and
B # 1, then there is an i with B(i) = j # i. If a is a 3-cycle fixing i and moving
J, then « and B do not commute: fa(i) = (i) = j and af(i) = a(j) # j; there-
fore, their commutator is not the identity. Furthermore, a(fa~ 1) lies in the
normal subgroup H, and, by Lemma 3.4, it is a product of two 3-cycles
(xfo~')B; thus it moves at most 6 symbols, say, if, ... f F={ye A,
y fixes the other symbols}, then F = A, and afa™'f~' € HN F < F. Since Ag
issimple, HN F = F and F < H. Therefore H contains a 3-cycle, H = A, (by
Lemma 3.9), and the proofis complete. W

EXERCISES

3.20. Show that A, a group of order 60, has no subgroup of order 30.
3.21. If n # 4, prove that A, is the only proper nontrivial normal subgroup of S,.

3.22. If G < S, contains an odd permutation, then |G| is even and exactly half the
elements of G are odd permutations.

3.23. If X = {1, 2,...} is the set of all positive integers, then the infinite alternating
group A, is the subgroup of Sy generated by all the 3-cycles. Prove that A, is
an infinite simple group. (Hint. Adapt the proof of Theorem 3.11.)

Some Representation Theorems

A valuable technique in studying a group is to represent it in terms of some-
thing familiar and concrete. After all, an abstract group is a cloud; it is a
capital letter G. If the elements of G happen to be permutations or matrices,
however, we may be able to obtain results by using this extra information. In
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this section we give some elementary theorems on representations; that is, on
homomorphisms into familiar groups.

The first such theorem was proved by Cayley; it shows that the study of
subgroups of symmetric groups is no less general than the study of all groups.

Theorem 3.12 (Cayley, 1878). Every group G can be imbedded as a subgroup of
Sg. In particular, if |G| = n, then G can be imbedded in S,.

Proof. Recall Exercise 1.33: for each a € G, left translation L,: G — G, defined
by x — ax, is a bijection; that is, L, € Sg. The theorem is proved if the func-
tion L: G — Sg, given by a — L,, is an injection and a homomorphism, for
then G =~ im L. If a # b, then L,(1) = a # b = Ly(1), and so L, # L,. Finally,
we show that L, = L, o L. If x € G, then L,(x) = (ab)x, while (L, o L,)(x) =
L,(Ly(x)) = L,(bx) = a(bx); associativity shows that these are the same. W

Definition. The homomorphism L: G — Sg, given by a — L, is called the left
regular representation of G.

The reason for this name is that each L, is a regular permutation, as we
shall see in Exercise 3.29 below.

Corollary 3.13. If k is a field and G is a finite group of order n, then G can be
imbedded in GL(n, k).

Proof. The group P(n, k) of all n x n permutation matrices is a subgroup of
GL(n, k) that is isomorphic to S, (see Exercise 1.45). Now apply Cayley’s
theorem to imbed G into P(n, k). M

The left regular representation gives another way to view associativity.
Assume that G is a set equipped with an operation # such that there is an
identity e (thatis,exa = a = ax*e for all a € G) and each element a € G has a
(two-sided) inverse a’ (i.e., axa’ = e = a’ * a). Then, for each a € G, the func-
tion L,: G — G, defined by L,(x) = a*x, is a permutation of G with inverse
L, . If = is associative, then G is a group and Cayley’s theorem shows that the
function L: G — Sg, defined by a+— L,, is a homomorphism; hence, im L is a
subgroup of S;. Conversely, if im L is a subgroup of Sg, then * is associative.
For if L, o L, eim L, there is c € G with L, o L, = L.. Thus, L, o Ly(x) =
L (x) for all x € G; that is, a*(b* x) = c* x for all x € G. But if x = ¢, then
axb = c, and so c*x = (a*b)* x. This observation can be used as follows.
Assume that G = {x,, ..., x,} is a set equipped with an operation *, and
assume that its multiplication table [a;;] is a Latin square, where a;; = X; * X;.
Each row of the table is a permutation of G, and so = is associative (and G is
a group) if the composite of every two rows of the table is again a row of the
table. This test for associativity, however, is roughly as complicated as that in
Exercise 1.42; both require about n* computations.
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We now generalize Cayley’s theorem.

Theorem 3.14. If H < G and [G:H] = n, then there is a homomorphism
p: G — S, withker p < H.

Proof. If a € G and X is the family of all the left cosets of H in G, define a
function p,: X — X by gH > agH for all g € G. It is easy to check that each
Pa is @ permutation of X (its inverse is p,-:) and that a s P, 1s @ homomor-
phism p: G — Sy = S,. If a € ker p, then agH = gH for all g € G; in particular,
aH = H, and so a € H; therefore,kerp < H. W

Definition. The homomorphism p in Theorem 3.14 is called the representa-
tion of G on the cosets of H.

When H = 1, Theorem 3.14 specializes to Cayley’s theorem.

Corollary 3.15. A simple group G which contains a subgroup H of index n can
be imbedded in S,.

Proof. There is a homomorphism p: G — S, with ker p < H < G. Since G is
simple, ker p = 1, and so p is an injection. W

Corollary 3.16. An infinite simple group G has no proper subgroups of finite
index.

Corollary 3.15 provides a substantial improvement over Cayley’s theorem,
at least for simple groups. For example, if G = A5, then Cayley’s theorem
imbeds G in Sgo. But G has a subgroup H =~ A4, of order 12 and index
60/12 = 5, and so Corollary 3.15 says that G can be imbedded in S;.

Theorem 3.17. Let H < G and let X be the family of all the conjugates of H in
G. There is a homomorphism : G — Sy with ker Y < Ng(H).

Proof. If a € G, define y,: X — X by Y,(gHg™*) = agHg 'a™*. If b € G, then
VaUs(gHg™") = Yu(bgHg™'b™") = abgHg™'b™'a™" = Yiu(gHg™").

We conclude that , has inverse Y, 1, so that Y, €Sy and ¥: G— Sy is a
homomorphism.

If a € ker ¥, then agHg 'a™! = gHg ™! for all g € G. In particular, aHa™! =
H, and so a € Ng(H); hence ker y < Ng(H). B

Definition. The homomorphism y of Theorem 3.17 is called the representa-
tion of G on the conjugates of H.
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EXERCISES

3.24.

3.25.
3.26.

3.27.

3.28.

3.29.

3.30.

3.31

332
3.33.

3.34.

3.35

Let a € G, where G is finite. If a” has m conjugates and a has k conjugates, then
m|k. (Hint. Cg(a) < Cg(a").)

Show that if n > 5, then S, has no subgroup of index ¢ for 2 <z <n.

(i) If p is the representation of a group G on the cosets of a subgroup H, then
ker p = ()xeg XHx*. Conclude that if H < G, then ker p = H.

(i) If y is the representation of a group G on the conjugates of a subgroup H,
then ker Y = (e XNg(H)x ™.

The right regular representation of a group G is the function R: G — S defined

by a — R,, where R (x) = xa™'.

(i) Show that R is an injective homomorphism. (Hint. See Exercises 1.33 and
1.47.) (This exercise is the reason why R, is defined as right multiplication by
a"! and not by a.)

(i) If L and R are, respectively, the left and right regular representations of S;,
prove that im L and im R are conjugate subgroups of S.

If p is prime and 7, « € S, are a transposition and a p-cycle, respectively, show
that S, = {1, a). (See Exercise 2.9(iii).)

If G is a finite group and a € G, then L, is a regular permutation of G. (Hint. If
L, = B,...B, is the complete factorization of L, and if g is a symbol occurring
in some B;, then the set of all symbols in B; is the right coset {a)g.)

(i) Let G be a group of order 2™k, where k is odd. Prove that if G contains an
element of order 2™, then the set of all elements of odd order in G is a
(normal) subgroup of G. (Hint. Consider G as permutations via Cayley’s
theorem, and show that it contains an odd permutation.)

(ii) Show that a finite simple group of even order must have order divisible
by 4.

(i) (Poincaré). If H and K are subgroups of G having finite index, then H n K
also has finite index in G. (Hint. Show that [G: HN K] < [G: H][G:K].)
(i) If H has finite index in G, then the intersection of all the conjugates of H is
a normal subgroup of G having finite index.
@iii) If ([G: H],[G:K]) = 1,then [G: HN K] = [G: H][G : K].

Prove that A4 has no subgroup of prime index.

Let G be a finite group containing a subgroup H of index p, where p is the
smallest prime divisor of |G|. Prove that H is a normal subgroup of G.

Let G be an infinite simple group.
(i) Every x € G with x # 1 has infinitely many conjugates.
(i) Every proper subgroup H # 1 has infinitely many conjugates.

(Eilenberg—Moore). (i) If H < G, then there exists a group L and distinct homo-
morphisms f, g: G — L with f|H # g|H. (Hint. Let L = Sy, where X denotes the
family of all the left cosets of H in G together with an additional element co. If
a € G, define f, € Sy by f,(0) = 00 and f,(bH) = abH; define g: G - Sy by g =
y o f, where y: Sy — Sy is conjugation by the transposition which interchanges
H and o0.)
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(i) If A and G are groups, then a homomorphism h: 4 — G is a surjection if and
only if it is right cancellable: for every group L and every pair of homomor-
phisms f, g: G — L, the equation foh=go h implies f = g.

G-Sets

The elements of symmetric groups are functions; here is the appropriate
abstraction of this property.

Definition. If X is a set and G is a group, then X is a G-set if there is a function
a: G X X — X (called an action),' denoted by a: (g, x) — gx, such that:

(i) 1x = x for all x € X; and
(i) g(hx) = (gh)x forallg,he G and x € X.

One also says that G acts on X. If | X| = n, then n is called the degree of the
G-set X.

For example, if G < Sy, then a: G x X — X is evaluation: a(, x) = a(x);
using the notation of the definition, one often writes ox instead of o(x).

The first result is that G-sets are just another way of looking at permuta-
tion representations.

Theorem 3.18. If X is a G-set with action «, then there is a homomorphism
@: G = Sx given by d(g): x — gx = a(g, x). Conversely, every homomorphism
@: G — Sy defines an action, namely, gx = ¢(g)x, which makes X into a G-set.

Proof. If X is a G-set, g € G, and x € X, then
a(g")a(g): x — d(g™)(gx) = g7 (gx) = (97'g)x = 1x = x;

it follows that each &(g) is a permutation of X with inverse &(g~'). That & is
a homomorphism is immediate from (ii) of the definition of G-set. The con-
verse is also routine. H

The first mathematicians who studied group-theoretic problems, e.g.,
Lagrange, were concerned with the question: What happens to the poly-
nomial g(x,, ..., x,) if one permutes the variables? More precisely, if o € S,,

! In this definition, the elements of G act on the left. There is a “right” version of G-set that is
sometimes convenient. Define a right action o/: G x X — X, denoted by (g, x) — xg, to be a
function such that:

(i) x1 = xfor all x € X; and
(ii) x(gh) = (xg)hfor allg,he G and x € X.

It is easy to see that every right G-set gives rise to a (left) G-set if one defines a: G x X — X by
(g, x) = xg~* =o' (g7", x).
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define
g9° (X155 xn) = g(xals cees xa'n);

given g, how many distinct polynomials g are there? If g° = g forall g € S,,
then g is called a symmetric function. If a polynomial f(x) = ).7_, a;x’ has
roots 74, ..., I, then each of the coefficients a; of f(x) = a, [ [}=o (x — ;) is a
symmetric function of 7, ..., r,. Other interesting functions of the roots may
not be symmetric. For example, the discriminant of f(x) is defined to be the
number d?, where d = [[;<; (r; — r;). If D(x4, ..., x,) = [ [i<; (x; — x;), then it
is easy to see, for every o € S, that D’ = +D (for all i <}, either x; — x; or
x; — x; = —(x; — x;) occurs as a factor of D’). Indeed, D is an alternating
Sunction of the roots: D’ = D if and only if o € 4,. This suggests a slight
change in viewpoint. Given g(x,, ..., x,), find

Lg)={0€S,:9°=g};

this is precisely what Lagrange did (see Examples 3.3 and 3.3’ below). It is
easy to see that #(g) < S,; moreover, g is symmetric if and only if #(g) = S,,,
while #(D) = A,. Modern mathematicians are concerned with this same type
of problem. If X is a G-set, then the set of all f: X — X such that f(ox) = f(x)
for all x € X and all o € G is usually valuable in analyzing X.

ExampLE 3.3. If k is a field, then S, acts on k[x,, ..., x,] by 6g = g°, where
ga(xl, LR xn) = g(xab [ERE] xan)‘

ExaMPLE 3.4. Every group G acts on itself by conjugation.

ExaMPLE 3.5. Every group G acts on the family of all its subgroups by conju-
gation.

There are two fundamental aspects of a G-set.

Definition. If X is a G-set and x € X, then the G-orbit of x is
O(x) = {gx: g€ G} = X.
One often denotes the orbit ¢(x) by Gx. Usually, we will say orbit instead

of G-orbit. The orbits of X form a partition; indeed, the relation x = y de-

fined by “y = gx for some g € G” is an equivalence relation whose equiva-
lence classes are the orbits.

Definition. If X is a G-set and x € X, then the stabilizer of x, denoted by G,
is the subgroup
G, ={geG:gx=x} <G.

Let us see the orbits and stabilizers in the G-sets above.

ExampLE 3.3 Let X = k[x,,...,x,] and G = S,. If g€ k[x,, ..., x,], then
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O(g) is the set of distinct polynomials of the form g?, and G, = ¥(g) =
{ceG=S8,9°=g}.
Given g, Lagrange defined
g*(xl’ teey xn) = H (X - ga(xl’ [RRK] xn));

cEeS,
he then defined the resolvent A(g) of g to be the polynomial obtained from g*
by removing redundant factors. If r is the degree of A(g), then Lagrange
claimed that r = n!/|%(g)| (Abbati (1803) proved this claim). This formula is
the reason Lagrange’s theorem is so-called; Lagrange’s theorem for sub-
groups of arbitrary finite groups was probably first proved by Galois.

ExampLE 3.4'. If G acts on itself by conjugation and x € G, then 0(x) is the
conjugacy class of x and G, = Cg(x).

ExaMmpLE 3.5 If G acts by conjugation on the family of all its subgroups and
it H < G, then O(H) = {all the conjugates of H} and Gy = Ng(H).

Theorem 3.19. If X is a G-set and x € X, then

|0(9)] = [G: G,].

Proof. If x € X, let G/G, denote the family of all left cosets of G, in G. Define
f: 0(x) - G/G, by f(ax) = aG,. Now f is well defined: if ax = bx for some
b e G, then b™'ax = x, b"'a € G,, and aG, = bG,. The function f is an injec-
tion: if aG, = f(ax) = f(cx) = cG, for some c € G, then c*a € G, ¢ 'ax = x,

and ax = cx; the function f is a surjection: if a € G, then aG, = f(ax). There-
fore, f is a bijection and |0(x)| = |G/G,| =[G:G,]. B

Corollary 3.20. If a finite group G acts on a set X, then the number of elements
in any orbit is a divisor of |G|.

Corollary 3.21.

(i) If G is a finite group and x € G, then the number of conjugates of xinGis
[G: Ce(x)]. .

(ii) If G is a finite group and H < G, then the number of conjugates of Hin G
is[G: Ng(H)]

Proof. Use Examples 3.4'and 3.5. W

We have now explained the similarity of the proofs of Theorems 3.2 and
3.3,

EXERCISES
3.36. If D(xy, ..., X,) = | [i<; (x; — X;), prove that #(D) = {c € §,: D" = D} = A,.

3.37. Let X be a G-set, let x, y € X, and let y = gx for some g € G. Prove that G, =
gG.g~!; conclude that |G,| = |G-
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3.38 (Abbati). If k is a field, g € k[x,, ..., x,], and g €§,, write g°(x, ..., X,) =
g(X,1, ..., X,m), as in Example 3.3. Show that, for any given g, the number of
distinct polynomials of the form g° is a divisor of n!. (Hint. Theorem 3.19.)

3.39. If G < S, then G acts on X = {1, ..., n}. In particular, {«) acts on X for every
a € S,. If the complete factorization of « into disjoint cycles is « = f; ... B, and if
i is a symbol appearing in f;, then O(i) = {a*(i): k € Z} consists of all the symbols
appearing in f;. (Compare Exercise 3.29.)

3.40. Cayley’s theorem shows that every group G acts on itself via left translations.
Show that there is just one orbit (if x € G, then G = {gx: g € G}) and that G, = 1
for every x € G.

Definition. A G-set X is transitive if it has only one orbit; that is, for every
x, y € X, there exists o € G with y = ox.

3.41. If X is a G-set, then each of its orbits is a transitive G-set.

3.42. If H < G, then G acts transitively on the set of all left cosets of H (Theorem 3.14)
and G acts transitively on the set of all conjugates of H (Theorem 3.17).

343. (i) X = {x,,..., x,} is a transitive G-set and H = G,, then there are elements
g1, .-, g, in G with g;x; = x; such that g, H, ..., g,H are the distinct left
cosets of H in G.
(i) The stabilizer H acts on X, and the number of H-orbits of X is the number
of (H-H)-double cosets in G.

3.44. Let X be a G-set with action a: G x X — X, and let & G — Sy send g € G into
the permutation x — gx.
(i) If K = ker &, then X is a (G/K)-set if one defines

(gK)x = gx.

(ii) If X is a transitive G-set, then X is a transitive (G/K)-set.
(iii) If X is a transitive G-set, then |ker &| < |G|/|X|. (Hint. If x € X, then
|O(x)] = [G:G,] < [G:kerd].)

Counting Orbits
Let us call a G-set X finite if both X and G are finite.
Theorem 3.22 (Burnside’s Lemma?). If X is a finite G-set and N is the number

> What is nowadays called Burnside’s lemma was proved by Frobenius (1887), as Burnside
himself wrote in the first edition (1897) of his book. This is another example (we have already
mentioned Lagrange’s theorem) of a name of a theorem that is only a name; usually “Smith’s
theorem” was discovered by Smith, but this is not always the case. It is futile to try to set things
right, however, for trying to change common usage would be as successful as spelling reform.
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of G-orbits of X, then
N =(1/IG]) ), F(v),

teG

where, for © € G, F(1) is the number of x € X fixed by 1.

Proof. In the sum )", ; F(7), each x € X is counted | G,| times (for G, consists
of all those 7 € G which fix x). If x and y lie in the same orbit, then Exercise
3.37 gives |G,| = |G,|, and so the [G: G,] elements constituting the orbit of
x are, in the above sum, collectively counted [G: G,]|G,| = |G| times. Each
orbit thus contributes |G| to the sum, andso ) .. F(t) = N|G. H

Corollary 3.23. If X is a finite transitive G-set with | X| > 1, then there exists
7 € G having no fixed points.

Proof. Since X is transitive, the number N of orbits of X is 1, and so Burnside’s
lemma gives

1 = (1/1G1) ZG F(z).

Now F(1) =|X| > 1; if F(r) > O for every t € G, then the right hand side is
too large. W

Burnside’s lemma is quite useful in solving certain combinatorial problems.
Given ¢ distinct colors, how many striped flags are there having n stripes (of
equal width)? Clearly the two flags below are the same (just turn over the top
flag and put its right end at the left).

cq Ccy Cn—1 Cy

n Cn-1 Cy C1

S be th tati 1 2 ...n—1n
Let 7 € §, be the permutation nn—1_. 2 1

tuples ¢ = (cy, . .., C,), Where each ¢, is any of the g colors, then the cyclic group
G = (1) acts on ¥" if we define t¢c = t(cy, ..., ¢,) = (¢, ..., ;). Since both ¢
and tc give the same flag, a flag corresponds to a G-orbit, and so the number
of flags is the number N of orbits. By Burnside’s lemma, it suffices to compute
F(1) and F(z). Now F(1) = |¢"| = ¢". An n-tuple (cy, ..., ¢,) is fixed by 7 if
and only if it is a “palindrome™ ¢, = ¢,; ¢; = C,_;; €tc. If n = 2k, then © =
1 mR2n—1)...k k+1);ifn=2k+ 1,thent=(1 n)(2 n— ...k k+2).
It follows that F(r) = ¢'®*2] where [(n + 1)/2] denotes the greatest integer
in (n + 1)/2. The number of flags is thus

>. If " is the set of all n-

N = 3" + g,
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Let us make the notion of coloring more precise.

Definition. If G < Sy, where X = {1, ..., n}, and if € is a set of colors, then "
is a G-set if we define t(cy, ..., ¢,) = (C;1, - - Cy) fOr all T € G. If | €| = g, then
an orbit of ¥" is called a (¢, G)-coloring of X.

Lemma 3.24. Let € be a set of q colors, and let G < Sy = S,. If T € G, then
F(1) = q'®, where t(t) is the number of cycles occurring in the complete factori-
zation of T.

Proof. Since T(Cq, ..., Cp) = (Co15 -+ Con) = (Cq, - -, Cy), WE se€ that c; = c; for
all i, and so ti has the same color as i. It follows that t*i has the same color
as i, for all k; that is, all i in the {t)-orbit of X have the same color. But
Exercise 3.39 shows that if the complete factorization of 7 is T = B ... By,
and if i occurs in f;, then the set of symbols occurring in f; is the {t)-orbit
containing i. Since there are t(t) orbits and q colors, there are q'® n-tuples
fixed by 7 in its action on ¢". H

Definition. If the complete factorization of 7 € S, has e,(t) > 0 r-cycles, then
the index of 7 is

ind(t) = x5 Ox2® | x&O,
If G < §,, then the cycle index of G is the polynomial
Pg(x1, ..., x,) = (1/|G]) ZG ind(r) € Q[x4, ..., x,].

For example, let us consider all possible blue and white flags having nine
stripes. Here |X| =9 and G = {t) < S,, where t = (1 9)(2 8)(3 7)(4 6)(5).
Now, ind(1) = x7, ind(z) = x,x%, and the cycle index of G = (1) = {1,1}is

Pglxy, ... x9) = %(x? + x1x§);

Corollary 3.25. If | X| = n and G < S,, then the number of (q, G)-colorings of
X is Pg(q, ..., q).

Proof. By Burnside’s lemma for the G-set 4", the number of (g, G)-colorings
of X is

(/G ¥, F(x).

teG

By Lemma 3.24, this number is
1/16G1) ZG q'®,

where t(t) is the number of cycles in the complete factorization of t. On the
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other hand,
Pg(x1s -5 X,) = (1/|G]) Y. ind(7)

teG

=(1/|G]) T xOx20  xend),

teG

and so
Pg(g, ... q) = (1/|G]) T gero+exrt-+eut)

teG

=(1/G) ¥ ¢®. =

teG

In 1937, Polya pushed this technique further. Burnside’s lemma allows one
to compute the number of blue and white flags having nine stripes; there are

264 of them. How many of these flags have four blue stripes and five white
stripes?

Theorem (Polya, 1937). Let G < Sy, where |X| = n, let |4| = q, and, for each
i> 1, define 6, =cj + - + ci. Then the number of (g, G)-colorings of X
with f, elements of color c,, for every r, is the coefficient of c{‘c{’...c‘{‘! in
Ps(o4, ..., 0,).

The proof of Polya’s theorem can be found in combinatorics books (e.g.,

see Biggs (1989), Discrete Mathematics). Let us solve the flag problem posed
above; we seek the coefficient of b*w? in

Pg(04, ..., 00) = 2((b + w)° + (b + w)(b* + w?)*).

A short exercise with the binomial theorem shows that the coefficient of b*w>
is 66.

EXERCISES

3.45. If G is a finite group and c is the number of conjugacy classes in G, then
c=(1/|Gl) ZG [Cs(D)l-

3.46. (i) Let p be a prime and let X be a finite G-set, where |G| = p" and | X| is not
divisible by p. Prove that there exists x € X with tx = x forall € G.
(ii) Let V be a d-dimensional vector space over Z,, and let G < GL(d, Z,) have
order p". Prove that there is a nonzero vector v e ¥ with v = vforallz e G.

3.47. If there are g colors available, prove that there are
Lg™ + 24107 +IM 4 gl +72))

distinct n x n colored chessboards. (Hint. The set X consists of all n x n arrays,
and the group G is a cyclic group {t), where 7 is a rotation by 90°. Show that t
is product of disjoint 4-cycles.)
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Figure 3.1

3.48. If there are q colors available, prove that there are
(1/n) ; ¢(n/d)q*

colored roulette wheels having n congruent compartments, each a circular sec-
tor (in the formula, ¢ is the Euler ¢-function and the summation ranges over all
divisors d of n with 1 <d < n). (Hint. The group G = {t) acts on n-tuples,

where t(cy, ¢5, ..., C,) = (Cus €15 C25 - -+ €,—1). Use Corollary 3.25 and Theorem
2.15)

Figure 3.2
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Some Geometry

The familiar euclidean n-space is the vector space R" consisting of all n-tuples
of real numbers together with an inner (or dot) product. If ¢; is the vector
having ith coordinate 1 and all other coordinates 0, then the standard basis is
{e1,..., &,}. A vector x = (xy, ..., x,) has the unique expression x = Y ; x;¢;,
and if y = (yy, ..., y,), then the inner product (x, y) is defined to be the num-
ber Y ; x;y;.

A subset {u,...,u,} of R" is called an orthonormal basis if (u;, u;) = d;5;
that is, (u;, u;) = 1 for all i and (u;, u;) = 0 when i # j (it is easy to see that an
orthonormal basis is a basis, for it is a linearly independent subset of R"
having n elements). The standard basis is an orthonormal basis. If {u, ..., u,}
is an orthonormal basis and if x = )'; x;u;, then (x, x) = (3; x;u;, Y. ; x;4;) =
Yo xixi(u, u) =Y x2 If x = (x4, ..., x,) € R", define |[x]| = /).; x? (thus,
lx||? = (x, x)), and define the distance between x and y to be ||x — y|.

Definition. A motion is a distance-preserving function T: R" — R"; that is,
| Tx — Tyl = ||x — y| for all x, y € R".

It is plain that if w € R", then the function T,,: R" — R", defined by T,,(x) =
x + w for all x € R", is a motion (T, is called translation by w). Of course,
T,,(0) = w, so that T,, is not a linear transformation if w # 0.

Definition. A linear transformation S: R" —» R" is orthogonal if ||Sx| = | x||
for all x e R™.
Lemma 3.26.

(i) A linear transformation S: R* — R" is orthogonal if and only if {Sey, ...,
Se,} is an orthonormal basis (where {&;, ..., &,} is the standard basis).
(ii) Every orthogonal transformation S is a motion.

Proof. (i) Assume that S is orthogonal. If x = ) ; x;¢; and y = }; y;&;, then
lx + yI2 = x> = llyl? =23 xiy: = 2(x, y).

In particular,
I1Sx + SylI> — 1Sx[|*> — ISyl|* = 2(Sx, Sy).

Since ||x + y[|? = [S(x + y)|1> = [Sx + Syl we have (Sx, Sy) = (x, y) for all
x, y. In particular,
0;; = (&:, &) = (S&i, Sej)a

so that {Se,, ..., S¢,} is an orthonormal basis.
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Conversely, if x = Y ; x;¢;, then Sx = ) ; x;S¢;,
I1Sx)|? = (Sx, Sx) = ¥, x;x;(Se;, Sgy) = 3, xF = [|x[|%,
ij :

and S is orthogonal.
() If x=Y,x¢& and y=Y,y:, then |[Sx —Sy|* = [S(x —y)I* =
HZi (x; — y)Seill® = Zi (x; — ¥ =lx - y|> =

Notice that every orthogonal transformation (as is every motion) is an
injection, for if x # y, then 0 # ||x — y|| = ||Sx — Sy|| and Sx # Sy; since S is
a linear transformation on R" with nullity 0, it follows that S is invertible. It
is easy to see that if § is orthogonal, then so is S7*.

Lemma 3.27. Every motion S: R" — R” fixing the origin is a linear transforma-
tion, hence is orthogonal.

Proof. We begin by showing that a motion T fixing 0 and each of the elements
in the standard basis must be the identity. If x = (x,, ..., x,), denote Tx by
(P15 +--» Yp)- Since TO =0, | Tx| = || Tx — TO|| = ||x — O] = |Ix|| gives

i+ yi=xi4 o+ x2
But also || Tx — ¢,|| = || Tx — Teq|| = ||x — &, || gives
=D+ 5+ 4y =0 = D+ x5+ + X
Subtracting gives 2y; — 1 = 2x; — 1, and y; = x,. A similar argument gives
y; = x; for all i, so that Tx = x.
Assume now that Tg; = u; fori = 1,..., n, and let S: R" — R" be the linear

transformation with Sg; = u; for all i. Now TS™! is a motion (being the com-
posite of two motions) that fixes the standard basisand 0,andso T=S. W

Theorem 3.28.

(i) The set O(n, R) of all motions S: R" — R" fixing the origin is a subgroup of
GL(n, R) (called the real orthogonal group).

(ii) Every motion T: R" — R" is the composite of a translation and an orthogonal
transformation, and the set M (n, R) of all motions is a group (called the real
group of motions).

Proof. (i) Routine, using the lemma.

(ii) Let T be a motion, and let T(0) = w. If S is translation by —w (i.e.,
Sx = x — wfor all x), then ST is a motion fixing 0, hence is orthogonal, hence
is a bijection; therefore, T = S7!(ST) is a bijection. The reader may now

show that the inverse of a motion is a motion, and that the composite of
motions is a motion. M

Theorem 3.29. A function T: R" —» R" fixing the origin is a motion if and only
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if it preserves inner products:
(Tx, Ty) = (x, y) forall x,yeR"
Proof. If x, y e R",

Ix + ylI2 = (x + y,x + y) = x> + 2(x, y) + || yl|*.
Similarly, since T is linear (by Lemma 3.27),
ITG + YN = (T(x + y), T(x + y))
= (Tx + Ty, Tx + Ty)
= |Tx||> + 2(Tx, Ty) + | Ty||>.

By hypothesis, |x + ylI> = [ T(x + y)I?, lIx1> = [ Tx|? and ||yl|*> = | Ty||?,
so that 2(x, y) = 2(Tx, Ty) and (x, y) = (Tx, Ty).
Conversely, if T preserves inner products, then

Ix —ylI?> = (x =y, x —y) =(Tx — Ty, Tx — Ty) = | Tx — Ty|?

for all x, y € R". Therefore, T preserves distance, hence is a motion. B

The geometric interpretation of this theorem is that every motion fixing
the origin preserves angles, for (x, y) = || x|/ || y|| cos 0, where 0 is the angle
between x and y. Of course, all motions preserve lines and planes; they are,
after all, linear. For example, given a line £ = {y + rx: r € R} (where x and y
are fixed vectors) and a motion T, S (where T, is translation by w and S is
orthogonal), then T,,S(¢) = {T,,(Sy + rSx):r € R} = {(w + Sy) + rSx: r e R}
is also a line.

Definition. A matrix 4 € GL(n, R) is orthogonal if AA' = E, where A' denotes
the transpose of A.

Denote the ith row of A by a;. Since the i, j entry of AA" is (a;, 4;), it follows
that {a,, ..., a,} is an orthonormal basis of R". If T is an orthogonal transfor-
mation with Tg; = g, for all i, then the matrix of T relative to the standard
basis is an orthogonal matrix. It follows that O(n, R) is isomorphic to the
multiplicative group of all n x n orthogonal matrices.

Since det A' = det 4, it follows that if 4 is orthogonal, then (det A? =1,
andsodet A = +1.

Definition. A motion T fixing the origin is called a rotation (or is orientation-
preserving) if det T = 1. The set of all rotations form a subgroup SO(n, R) <
O(n, R), called the rotation group. A motion fixing the origin is called orienta-
tion-reversing if det T = —1.

Of course, [O(n, R): SO(n, R)] = 2.
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Here are some examples of orientation-reversing motions. It is a standard
result of linear algebra that if W is any subspace of R" and W' = {ve V:
(v, w) = O for all w € W}, then dim W' = n — dim W. A hyperplane H in R" is
a translate of a subspace W of dimension n — 1: H = W + v, for some vector
vo. If H is a hyperplane through the origin (that is, H = W is a subspace of
dimension n — 1), then dim H* = 1, and so there is a nonzero vector a with
(a, h) = 0 for all h € H; multiplying by a scalar if necessary, we may assume
that a is a unit vector.

If 7 is a line in the plane, then the reflection in ¢ is the motion p: R? —» R?
which fixes every point on / and which interchanges all points x and x’
equidistant from £ (as illustrated in Figure 3.3; thus, / behaves as a mirror).
More generally, define the reflection in a hyperplane H as the motion that
fixes every point of H and that interchanges points equidistant from H. If p
is to be a linear transformation, then H must be a line through the origin, for
the only points fixed by p lie on H.

Figure 3.3

Theorem 3.30. Every reflection p in a hyperplane H through the origin is
orientation-reversing.

Proof. Choose a unit vector ae R" with (h,a) =0 for all he H. Define
P R">R" by p'(x) = x — 2(x, a)a for all xe R". If x € H, then (x,a) =0,
x — 2(x, a)a = x, and p’ fixes x; if x ¢ H, then x = h + ra, where h e H and
reR. Now (x,a)=(h+ra,a)=r and x—2(x,a)a=h—ra; hence,
p'(h + ra) = h — ra, so that p’ interchanges pairs of vectors equidistant from
H and fixes H pointwise. Hence, p’ = p.

If {hy,..., h,_,} is a basis of H, then {h,,...,h,_,,a} is a basis of R".
Relative to the latter basis, the matrix of p is diagonal with diagonal entries
1,1,...,1, —1; therefore, det p = —1 and p is orientation-reversing. W
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Let us now consider the case n = 2. If we identify R* with the complex
numbers C, then perpendicular unit vectors u, and u, have the form u, = e®
and u, = €', where ¢ = 0 + n/2. It follows that if

a b

c d
is an orthogonal matrix, then its columns are the real and imaginary parts of
Ag,; and Aeg,. Therefore, either

Az[cosé’ cos(0+1n)] [cos® —sind
sinf sin(0+1z)| " |sinf cosd

and det A = 1 (so that 4 corresponds to rotation about the origin by the
angle 6) or
_ [cos@ cos(f —in)] [cos® sin6
sinf sin(@—1n)| |sinf —cosh

and det 4 = —1 (so that 4 corresponds to reflection in the line # through the
origin having slope tan #). In particular, the matrix

1 0
B =
L)
corresponds to the motion (x, y) — (x, —y) which is the reflection in the
x-axis.

With this background, we now pose the following problem. Let A be a
figure in the plane having its center of gravity at the origin. Define

P(A) = {S € O(2, R): S(A) = A}.

Of course, S(A) = {x € R*: x = S(y) for some y € A}. If A is a triangle with
vertices a, b, and c and if S is a motion, then S(A) is also a triangle, say, with
vertices Sa, Sb, and Sc; if S € £(A), then S permutes X = {a, b, c}. It follows
that #(A) acts on X: there is a homomorphism y: #(A) - Sy, namely, S —
S| X, the restriction of S to X. Now ¥ is an injection, for a linear transforma-
tion on R? is determined by its values on an independent set of two vectors. It
follows that #(A) is a finite group; indeed, &(A) is isomorphic to a subgroup
of S;. If A is an equilateral triangle, then (A) = S, (see Exercise 3.58 below);
if A is only an isosceles triangle, then F(A) = Z,; if A is not even isosceles,
then &(A) = 1. The group &(A) thus “measures” the amount of symmetry
present in A: bigger groups arise from “more symmetric” triangles. A circle A
with center at the origin is very symmetric, for #(A) is an infinite group (for
every 6, it contains rotation about the origin by the angle ). One calls #(A)
the symmetry group of the figure A.

Theorem 3.31. If A is a regular polygon with n vertices, then #(A) is a group of
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order 2n which is generated by two elements S and T such that

§"=1, T?> =1, and TST =S7".

Proof. We may assume that the origin is the center of gravity of A and that
one vertex of A lies on the x-axis. Observe that &(A) is finite: as in the
example of triangles, it can be imbedded in the group of all permutatons of
the vertices. Now each S € #(A) also permutes the edges of A; indeed, regu-
larity (that is, all edges having the same length) implies that &(A) acts transi-
tively on the n edges. Since the stabilizer of an edge has order 2 (the endpoints
can be interchanged), Theorem 3.19 gives |#(A)| = 2n. If S is rotation by
(360/n)° and T is reflection in the x-axis, then it is easy to check that #(A) =
{8, T) and that S and T satisfy the displayed relations. W

Definition. The dihedral group® D,,, for 2n > 4, is a group of order 2n which
is generated by two elements s and ¢t such that

s"=1, 2 =1, and tst = s~ L,

Note that D,, is not abelian for all n > 3, while D, is the 4-group V.
The next result explains the ubiquity of dihedral groups.

Theorem 3.32. If G is a finite group and if a, b € G have order 2, then {a, b) ~
D,, for some n.

Proof. Since G is finite, the element ab has finite order n, say. If s = ab, then
asa = a(ab)a = ba = (ab)™* = 57!, because both a and b have order 2.

It remains to show that |{a, b)| = 2n (of course, |<a, b>| = 2m for some m,
but it is not obvious that m = n). We claim that as’ # 1 for all i > 0. Other-
wise, choose i > 0 minimal with as’ = 1. Now i # 0 (for a # 1) and i # 1 (lest
1| = as = aab = b), so that i > 2. But 1 = as’ = aabs' ™' = bs'~!; conjugating
by b gives 1 =s'"'b = s'"2abb = s'"2a, and conjugating by a now gives
as'~? = 1, contradicting the minimal choice of i. It follows that as’ # s/ for all
i, j; hence <a, b) contains the disjoint union {s) Ua{s), and so [<a, b)| =
[<a, s>| > 2n. For the reverse inequality, it suffices to show that

H={as"0<j<20<i<n}

is a subgroup. Using Corollary 2.4, one need check only four cases: as‘as* =
sTisk = sk e H; as'sk = as™t* e H; sisk = sitk e H: sigsk = a(as'a)s* =

asisk =as* e H. W

Elements of order 2 arise often enough to merit a name; they are called
involutions.

* In earlier editions, I denoted D,, by D,.
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Let Q be a figure in R3 with its center of gravity at the origin, and define
F(Q) = {Se0(3, R): SQ) =Q}.

If Q = X, is the regular solid having n (congruent) faces, each of which has k
edges, then #(X,) acts transitively on the set of n faces of X, (this is essentially
the definition of regularity), while the stabilizer of a face f (which is a regular
k-gon) consists of the k rotations of f about its center. By Theorem 3.19,
S(Z,) has order nk.

It is a classical result that there are only five regular solids: the tetrahedron
X, with 4 triangular faces; the cube £ with 6 square faces; the octahedron Z4
with 8 triangular faces; the dodecahedron Z,, with 12 pentagonal faces; the
icosahedron X,, with 20 triangular faces. The rotation groups of these solids
thus have orders 12, 24, 24, 60, and 60, respectively.

These considerations suggest investigation of the finite subgroups of the
orthogonal groups O(n, R). It can be shown that the finite subgroups of
O(2, R) are isomorphic to either D,, or Z,, and that the finite subgroups of
O(3, R) are isomorphic to either D,,, Z,, A,, S4, or As.

EXERCISES

3.49. Prove that D, ~ V and Dg = S;.
3.50. Prove that D, = S; X Z,.

3.51. Let G be a transitive subgroup of S,.
(i) If m = [G: G n V], then m|6.
(i) Ifm = 6,then G = S,;if m = 3,then G = A,;if m = 1,then G = V;ifm =2,
then either G = Z, or G = Dy.

3.52. (i) (von Dyck (1882)). Prove that #(Z,) = A, and that #(Z¢) = 5, = F(Z
(Hint. Ay = (s, t), where s* = 1*> = (st)’ = 1; S, = (s, t), Where st=13
(st)* = 1)
(i) (Hamilton (1856)). Prove that #(Z;,) = As = F(T0)- (Hint. As = s, t),
where s2 = 3 = (st)® = 1)
(Because of this exercise, A, is also called the tetrahedral group, S, is also called
the octahedral group, and A is also called the icosahedral group.)

8):

3.53. Let Tr(n, R) denote the set of all the translations of R". Show that Tr(n, R) is an
abelian normal subgroup of the group of motions M(n, R), and M(n, R)/Tr(n, R)
=~ O(n, R).

3.54. Tt can be shown that every S € SO(3, R) has 1 as an eigenvalue (there is thus a
nonzero vector v with Sv = v). Using this, show that the matrix of S (relative to
a suitable basis of R?) is
1 0 0
0 cosf —sinf
0 sinf cosb

3.55. Prove that the circle group T is isomorphic to SO(2, R).
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3.56. Let @ = 2™/" be a primitive nth root of unity. Show that the matrices

w 0 0 1
A=[0 w“] and B—I:1 0]

generate a subgroup of GL(2, C) isomorphic to D,,.
3.57. What is the center Z(D,,)? (Hint. Every element of D has a factorization sit)

3.58. If A is an equilateral triangle in R? with its center of gravity at the origin, show
that &(A) is generated by

-+ /32 1 0
A=[\/§72 _%] and Bz[o _1].

3.59. How many bracelets are there having n beads each of which can be painted any
one of g colors? (Hint. Use Corollary 3.25; D,, is the group that is acting.)

We now show how one can use groups to prove geometric theorems.

Recall that if u, v € R?, then the line segment with endpoints u and v, de-
noted by [, v], consists of all vectors tu + (1 — t)v, where 0 <t < 1. Ifu, v, w
are the vertices of a triangle A, then we will denote A by [u, v, w].

Definition. If v, ..., v, € R?, then a convex combination of v, ..., v, is a linear
combination Y t,v;, where all t; >0 and ) t; = 1.

Lemma 3.33. If A = [v,, v,, v3] is a triangle, then A consists of all the convex
combinations of vy, v,, V.

Proof. Denote the set of all convex combinations of v,, v,, v3 by C. We first
show that C = A. Let ¢ =t v, + t,v, + t3v; belong to C. If t; =1, then
c=v3€A Ift; # 1, then g = t, /(1 — t3)vy + t,/(1 — t3)v, is a convex com-
bination of v, and v,, hence lies on the line segment [v,, v,] = A. Finally,
c¢=(1 —t3)q + tyv; €A, for it is a convex combination of g and v;, and
hence it lies on the line segment joining these two points (which is wholly
inside of A). '

For the reverse inclusion, take ¢ € A. It is clear that C contains the perime-
ter of A (such points lie on line segments, which consist of convex com-
binations of two vertices). If § is an interior point, then it lies on a line
segment [u, w], where u and w lie on the perimeter (indeed, it lies on many
such segments). Thus, 6 = tu + (1 — t)w for some 0 <t < 1. Write u =
t,vy + tyv, + t3v; and w = s,v, + S0, + S3v3, wWhere t; >0, s; >0 and

2 t;=1=Y7_ s.Itsuffices to show that 6 = ¢t(} t;v;) + (1 — £)(}_ s;v;) =
Y. [tt;v;+(1—t)s;]v; is a convex combination of vy, v,, v5. But tt;+(1—1t)s;>
0, because each of its terms is nonnegative, while ) [tt; + (1 —t)s;] =

Y +1-09)s)=t+(1—-9=1 N

Definition. A function ¢: R? — R? is an affine map if there is a nonsingular
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linear transformation A: R?> — R? and a vector z € R? such that, for all v € R2,
o) = Av) + z.

The set of all affine maps under composition, denoted by Aff(2, R), is called
the affine group of the plane.

Lemma 3.34. Let ¢ be an affine map.

(i) @ preserves all convex combinations.

(ii) ¢ preserves line segments: for all u, v, ([u, v]) = [ou, @v].

(iii) The point tu + (1 — t)v, for 0 < t < 1, is called the t-point of [u, v]. If z is
the t-point of [u, v], where 0 < t < 1, then ¢z is the t-point of [ou, pv]. In
particular, ¢ preserves midpoints of line segments.

(iv) @ preserves triangles: if A = [u, v, w] is a triangle, then @(A) is the triangle
Lou, pv, pw].

Proof. (i) Let px = Ax + z, where A is a nonsingular linear transformation
and z e R If ), t,v; is a convex combination, then

(p(z tivi> = lztivi +z
=lztivi + <Z t,-)z

Y. tiAv;) + (Z n)z
=Y. ti(Av; + 2) = Y t;0(vy).

(ii) Immediate from (i), for [u, v] is the set of all convex combinations of u
and v.

(iii) Immediate from (i).

(iv) Immediate from (i) and Lemma 3.33. W

Lemma 3.35. Points u, v, w in R? are collinear if and only if {u — w,v — w} is
a linearly dependent set.

Proof. Suppose that u, v, w lie on a line 7, and let # consist of all vectors of the
form ry + z, where r € R and y, z € R?. There are thus numbers r; with u =
ry+z y=r,y+z and w=r;y + z. Therefore, u —w = (r, —r3)y and
v — w = (r, — r3)y form a linearly dependent set.

Conversely, suppose that u — w = r(v — w), where r € R. It is easily seen
that u, v, w all lie on the line # consisting of all vectors of the form t(v— w)+w,
wherete R. W

Lemma 3.36. If A = [u, v, w] and A’ = [/, v', w'], are triangles, then there is
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an affine map ¢ with ou =u', v =0, and ew = w’. Thus, Aff(2, R) acts
transitively on the family of all triangles in R,

Proof. The vertices u, v, w of a triangle are not collinear, so that the vectors
u —w and v — w form a linearly independent set, hence comprise a basis of
R?; similarly, {u’ — w’, v’ — w’} is also a basis of R%. There thus exists a
nonsingular linear transformation 4 with A(u — w) =4’ — w’ and A(v — w) =
v’ — w'. If z = w’ — A(w), then define ¢ by

oX)=AX)+w —Aw)=A(x —w)+ w.

It is easy to see that ¢ is an affine map which carries u, v, w to u’, v’, w’,
respectively. It follows from Lemma 3.33 that p(A) = A’. A

Theorem 3.37. For every triangle A, the medians meet in a common point which
is a 2-point on each of the medians.

Proof. 1t is easy to see that the theorem is true in the special case of an
equilateral triangle. E. By Lemma 3.36, there exists an affine map ¢ with
¢(E) = A. By Lemma 3.34, ¢ preserves collinearity, medians and %-points.
[ |

The reader is invited to prove other geometric theorems in this spirit, using
the (easily established) fact that affine maps preserve parallel lines as well as
conic sections (in particular, every ellipse is of the form ¢(A), where A is the
unit circle, for these are the only bounded (compact) conic sections).

F. Klein’s Erlangen Program (1872) uses groups to classify different geome-
tries on the plane (or more general spaces). If G < Sg., then a property P of a
figure A in R? is an invariant of G if ¢(A) has property P for all ¢ € G. For
example, invariants of the group M(2, R) of all motions include collinearity,
length, angle, and area; the corresponding geometry is the usual geometry of
Euclid. Invariants of Aff(2, R) include collinearity, triangles, line segments,
and t-points of line segments, parallelism, conic sections; the corresponding
geometry is called affine geometry. Other groups may give other geometries.
For example, if G is the group of all homeomorphisms of the plane, then
invariants include connectedness, compactness, and dimensionality; the cor-
responding geometry is called topology.



CHAPTER 4

The Sylow Theorems

p-Groups

The order of a group G has consequences for its structure. A rough rule of
thumb is that the more complicated the prime factorization of |G|, the more
complicated the group. In particular, the fewer the number of distinct prime
factors in |G|, the more tractible it is. We now study the “local” case when
only one prime divides |G|

Definition. If p is a prime, then a p-group is a group in which every element
has order a power of p.

Corollary 4.3 below gives a simple characterization of finite p-groups.

Lemma 4.1. If G is a finite abelian group whose order is divisible by a prime p,
then G contains an element of order p.

Proof. Write |G| = pm, where m > 1. We proceed by induction on m after
noting that the base step is clearly true. For the inductive step, choose x € G
of order t > 1. If p|t, then Exercise 2.11 shows that x"/? has order p, and the
lemma is proved. We may, therefore, assume that the order of x is not divisi-
ble by p. Since G is abelian, {x) is a normal subgroup of G, and G/{x) is an
abelian group of order |G|/t = pm/t. Since p[t, we must have m/t <m an
integer. By induction, G/{x) contains an element y* of order p. But the
natural map v: G — G/{x) is a surjection, and so there is y € G with v(y) =
y*. By Exercise 2.14, the order of y is a multiple of p, and we have returned to
the first case. W
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We now remove the hypothesis that G is abelian.

Theorem 4.2 (Cauchy, 1845). If G is a finite group whose order is divisible by
a prime p, then G contains an element of order p.

Proof. Recall Theorem 3.2. If x € G, then the number of conjugates of x is
[G: C4(x)], where Cg(x) is the centralizer of x in G. If x ¢ Z(G), then its
conjugacy class has more than one element, and so |C4(x)| < |G|. If p|| C4(x)|
for such a noncentral x, we are done, by induction. Therefore, we may assume
that pJ|Cgs(x)| for all noncentral x in G. Better, since |G| = [G: C4(x)]|Cg(x)],
we may assume that p|[G: C4(x)] (using Euclid’s lemma, which applies be-
cause p is prime).

Partition G into its conjugacy classes and count (recall that Z(G) consists
of all the elements of G whose conjugacy class has just one element):

(*) Gl =1Z(G)| + Y. [G: Co(x))],

where one Xx; is selected from each conjugacy class with more than one ele-
ment. Since |G| and all [G : C4(x;)| are divisible by p, it follows that | Z(G)| is
divisible by p. But Z(G) is abelian, and so it contains an element of order p,
by the lemma. W

Definition. Equation (x) above is called the class equation of the finite
group G.

Here is a second proof of Cauchy’s theorem, due to J.H. McKay, which
avoids the class equation. Assume that p is a prime and that G is a finite
group. Define

X ={(a;,...,a,)€G x - x G:aja,...a,=1}.

Note that | X| = |G|?~, for having chosen the first p — 1 coordinates arbi-
trarily, we must set a, = (a,a,...a,_,)"". Now X is a Z,-set, where g€ Z,
acts by cyclically permuting the coordinates (since g;...a,a, ...q;_; is a con-
jugate of a,a,...a,, the product of the permuted coordinates is also equal to
1). By Corollary 3.21, each orbit of X has either 1 or p elements. An orbit with
just one element is a p-tuple having all its coordinates equal, say, a; = a for
all i; in other words, such orbits correspond to elements a € G with a? = 1.
Clearly (1, ..., 1) is such an orbit; were this the only such orbit, then we
would have

X =1GIP™ =1+ kp

for some integer k > 0; that is, |G|?~! = 1 mod p. If p divides |G|, however,
this is a contradiction, and so we conclude that G must have an element of
order p. (As A. Mann remarked to me, if |G| is not divisible by p, then we have
proved Fermat’s theorem.)
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Corollary 4.3. 4 finite group G is a p-group if and only if |G| is a power of p.

Proof. If |G| = p™, then Lagrange’s theorem shows that G is a p-group. Con-
versely, assume that there is a prime g % p which divides |G|. By Cauchy’s

theorem, G contains an element of order g, and this contradicts G being a
p-group. N

Theorem 4.4. If G + 1 is a finite p-group, then its center Z(G) # 1.

Proof. Consider the class equation
Gl = 1Z(G) + X [G: Cg(x)].

Each Cg(x;) is a proper subgroup of G, for x; ¢ Z(G). By Corollary 4.3,
[G: Cg(x;)] is a power of p (since |G| is). Thus, p divides each [G: Cgx(x)],
and so p divides |Z(G)|. W

If G is a finite simple p-group, then G = Z(G) and G is abelian; therefore, G
must be cyclic of order p. Theorem 4.4 is false for infinite p-groups.

Corollary 45. If p is a prime, then every group G of order p? is abelian.

Proof. If G is not abelian, then Z(G) < G; since 1 # Z(G), we must have
|Z(G)| = p. The quotient group G/Z(G) is defined, since Z(G) < G, and it is
cyclic, because |G/Z(G)| = p; this contradicts Exercise 3.3. W

Theorem 4.6. Let G be a finite p-group.

(1) If H is a proper subgroup of G, then H < Ng(H).
(i) Every maximal subgroup of G is normal and has index p.

Proof. (i) If H < G, then Ng(H) = G and the theorem is true. If X is the set of
all the conjugates of H, then we may assume that |X| = [G: Ng(H)] # 1.
Now G acts on X by conjugation and, since G is a p-group, every orbit of X
has size a power of p. As {H} is an orbit of size 1, there must be at least p — 1
other orbits of size 1. Thus there is at least one conjugate gHg™! # H with
{gHg™'} also an orbit of size 1. Now agHg™'a™ = gHg™ for all a € H, and
s0 g 'ag € Ng(H) for all a € H. But gHg™! # H gives at least one a € H with
g 'ag ¢ H,and so H < N;(H).

(ii) If H is a maximal subgroup of G, then H < Ng(H) implies that Ng(H) =
G; that is, H < G. By Exercise 2.58, [G: H] =p. N

Lemma 4.7. If G is a finite p-group and r, is the number of subgroups of G
having order p, thenr, = 1 mod p.

Proof. Let us first count the number of elements of order p. Since Z(G) is
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abelian, all its elements of order p together with 1 form a subgroup H whose
order is a power of p; hence the number of central elements of order p is
|H| — 1= —1mod p. If xe G is of order p and not central, then its con-
jugacy class x¢ consists of several elements of order p; that is, |x| > 1 is an
“honest” power of p, by Theorem 3.2. It follows that the number of elements
in G of order p is congruent to — 1 mod p; say, there are mp — 1 such ele-
ments. Since the intersection of any distinct pair of subgroups of order p is
trivial, the number of elements of order pisr,(p — 1). Butr;(p — 1) = mp — 1
impliesr; = lmodp. W

Theorem 4.8. If G is a finite p-group and r, is the number of subgroups of G
having order p°®, then r; = 1 mod p.

Proof. Let H be a subgroup of order p*, and let K, ..., K, be the subgroups
of G of order p**! which contain it; we claim that a = 1 mod p. Every sub-
group of G which normalizes H is contained in N = Ng(H); in particular,
each K; lies in N, for Lemma 4.6(ii) shows that H < K for all j. By the
Correspondence Theorem, the number of subgroups of order p in N/H is
equal to the number of subgroups of N containing H which have order p**!.
By the lemma, a = 1 mod p.

Now let K be a subgroup of order p***, and let H,, ..., H, be its subgroups
of order p®; we claim that b = 1 mod p. By the lemma, H; < K for all i. Since
H,H, = K (for the H; are maximal subgroups of K), the product formula
(Theorem 2.20) gives |D| = p*~', where D = H, " H,, and [K : D] = p2. By
Corollary 4.5, the group K/D is abelian; moreover, K/D is generated by two
subgroups of order p, namely, H;/D for i = 1, 2, and so it is not cyclic. By
Exercise 2.68, K/D = Z, x Z,. Therefore, K/D has p*> — 1 elements of order
p and hence has p + 1 = (p> — 1)/(p — 1) subgroups of order p. The Corre-
spondence Theorem gives p + 1 subgroups of K of order p* containing D.
Suppose there is some H; with D £ H;. Let E = H, N Hj; as above, there is a
new list of p + 1 subgroups of K of order p* containing E, one of which is H, .
Indeed, H, = ED is the only subgroup on both lists. Therefore, there are p
new subgroups and 1 + 2p subgroups counted so far. If some H, has not yet
been listed, repeat this procedure beginning with H, N H, to obtain p new
subgroups. Eventually, all the H; will be listed, and so the number of them is
b =1 + mp for some m. Hence, b = 1 mod p.

Let Hy, ..., H, be all the subgroups of G of order p°, and let K, ..., K,
be all the subgroups of order p**'. For each H,, let there be a; subgroups of

order p**! containing H;; for each K;, let there be b; subgroups of order p*
contained in K.
Now

i=1 Jj=1

for either sum counts each K; with multiplicity the number of H’s it contains.
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Since a; = 1 mod p for all i and b; = 1 mod p for all j, it follows that r, =
r,+; mod p. Lemma 4.7 now gives the result, forr; = 1modp. W

Each term in the class equation of a finite group G is a divisor of |G|, so
that multiplying by |G|™" gives an equation of the form 1 =}, (1/i;) with
each i; a positive integer; moreover, |G| is the largest i; occurring in this
expression.

Lemma 4.9 (Landau, 1903). Given n > 0 and q € Q, there are only finitely
many n-tuples (i, ..., i,) of positive integers such that q =) 1_, (1/ij).

Proof. We do an induction on n; the base step n = 1 is obviously true. Since
there are only n! permutations of n objects, it suffices to prove that there are
only finitely many n-tuples (iy, ..., i,) with i; <i, <--- < i, which satisfy the
equation g = Y 7_, (1/i)). For any such n-tuple, we have i; < n/q, for

q= 1/i1 +"'+ l/inS 1/i1 +”'+ 1/i1 =n/i1.

But for each positive integer k < n/q, induction gives only finitely many
(n — 1)-typles (i, ..., i,) of positive integers with ¢ — (1/k) = Y7, (1/i;). This
completes the proof, for there are only finitely many such k. W

Theorem 4.10. For every n > 1, there are only finitely many finite groups
having exactly n conjugacy classes.

Proof. Assume that G is a finite group having exactly n conjugacy classes. If
|Z(G)| = m, then the class equation is

61=12@)1 + ¥ [6:Colx)]

Ifi;=|G|for 1 <j<mandi;=|G|/[G:Cslx;)] = [Celxp)l form +1<j<
n, then 1 =Y "_, (1/i;). By the lemma, there are only finitely many such n-
tuples, and so there is a maximum value for all possible i;’s occurring therein,
say, M. It follows that a finite group G having exactly n conjugacy classes has
order at most M. But Exercise 1.41 shows that there are only finitely many
(nonisomorphic) groups of any given order. W

EXERCISES
4.1. Let H < G. If both H and G/H are p-groups, then G is a p-group.

4.2. If |G| = p", where p is prime, and if 0 < k <n, then G contains a normal sub-
group of order p*.

43. Let G be a finite p-group, and let H be a nontrivial normal subgroup of G. Prove
that H n Z(G) # 1.

4.4. Let G be a finite p-group; show that if H is a normal subgroup of G having order
p, then H < Z(G).



78 4. The Sylow Theorems

45. Let H be a proper subgroup of a finite p-group G. If |H| = p*, then there is a
subgroup of order p**! containing H.

4.6. Let p be a prime, let G be a finite group whose order is divisible by p, and assume
that P < G is a maximal p-subgroup (if @ < G is a p-subgroup and P < @, then
P =) '
(i) Every conjugate of P is also a maximal p-subgroup.
(i) If P is the only maximal p-subgroup of G, then P < G.

4.7. If pis a prime and G is a nonabelian group of order p3, then |Z(G)| = p, G/Z(G) =
Z, x Z,,and Z(G) = G', the commutator subgroup.

4.8. Prove that the number of normal subgroups of order p°® of a finite p-group G is
congruent to 1 mod p.

The Sylow Theorems

The main results of this section are fundamental for understanding the struc-
ture of a finite group. If p¢ is the largest power of p dividing |G|, then we shall
see that G contains a subgroup of order p°. Any two such subgroups are
isomorphic (indeed, they are conjugate), and the number of them can be
counted within a congruence.

Definition. If p is a prime, then a Sylow p-subgroup P of a group G is a
maximal p-subgroup.

Observe that every p-subgroup of G is contained in some Sylow p-sub-
group; this is obvious when G is finite, and it follows from Zorn’s lemma
when G is infinite. (Although we have allowed infinite groups G, the most
important groups in this context are finite.)

Lemma 4.11. Let P be a Sylow p-subgroup of a finite group G.

(i) |Ng(P)/P| is prime to p.
(ii) If a € G has order some power of p and aPa™' = P, then a € P.

Proof. (i) If p divides | Ng(P)/P|, then Cauchy’s theorem (Theorem 4.2) shows
that Ng(P)/P contains some element Pa of order p; hence, $* = (Pa) has
order p. By the Correspondence Theorem, there is a subgroup S < Ng(P) <
G containing P with §/P = S*. Since both P and S* are p-groups, Exercise 4.1
shows that § is a p-group, contradicting the maximality of P.

(ii) Replacing a by a suitable power of a if necessary, we may assume that
a has order p. Since a normalizes P, we have a € Ng(P). If a ¢ P, then the coset
Pa € Ng(P)/P has order p, and this contradicts (i). W

The observation suggesting the coming proof is that every conjugate of a
Sylow p-subgroup is itself a Sylow p-subgroup.
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Theorem 4.12 (Sylow, 1872).

(i) If P is a Sylow p-subgroup of a finite group G, then all Sylow p-subgroups
of G are conjugate to P.

(i1) If there arer Sylow p-subgroups, then r is a divisor of |Gland r = 1 mod p.!

Proof. Let X = {Py,...,P,} be the family of all the congugates of P,
where we have denoted P by P,. In Theorem 3.17, we saw that G acts on X
by conjugation: there is a homomorphism y: G — Sx sending a +— i, where
Y(P;) = aP,a™*. Let Q be a Sylow p-subgroup of G. Restricting ¥ to Q shows
that Q acts on X; by Corollary 3.21, every orbit of X under this action has
size dividing |Q|; that is, every orbit has size some power of p. What does it
mean to say that one of these orbits has size 1? There would be an i with
Ya(P;) = P, for all a € Q; that is, aP,a™! = P, for all a € Q. By Lemma 4.11(i),
ifae Q,then ae P; thatis, Q < P;; since Q is a Sylow p-subgroup, Q = P,. If
Q = P = P,, we conclude that every P-orbit of X has size an “honest” power
of p save {P, } which has size 1. Therefore, | X| = r = 1 mod p.

Suppose there were a Sylow p-subgroup Q that is not a conjugate of P; that
is, Q ¢ X.If {P,} is a Q-orbit of size 1, then we have seen that Q = P;, contra-
dicting Q ¢ X. Thus, every Q-orbit of X has size an honest power of p, and so
p divides | X|; that is, r = 0 mod p. The previous congruence is contradicted,
and so no such subgroup Q exists. Therefore, every Sylow p-subgroup Q is
conjugate to P.

Finally, the number r of conjugates of P is the index of its normalizer, and
so it is a divisor of |G|. MW

For example, |S,| = 24 = 2*-3, and so a Sylow 2-subgroup of S, has order
8. It is easily seen that Dg < S, if one recalls the symmetries of a square. The
Sylow theorem says that all the subgroups of S, of order 8 are conjugate
(hence isomorphic) and that the number r of them is an odd divisor of 24.
Since r # 1, there are 3 such subgroups.

We have seen, in Exercise 4.6, that if a finite group G has only one Sylow
p-subgroup P, for some prime p, then P < G. We can now see that the con-
verse is also true.

Corollary 4.13. A finite group G has a unique Sylow p-subgroup P, for some
prime p, if and only if P < G.

Proof. If G has only one Sylow p-subgroup P, then P < G, for any conjugate
of P is also a Sylow p-subgroup. Conversely, if P is a normal Sylow‘p-
subgroup of G, then it is unique, for all Sylow p-subgroups of G are conju-
gate. W

! Since all Sylow p-subgroups have the same order, this congruence also follows from Theorem
438.



80 4. The Sylow Theorems

Theorem 4.14. If G is a finite group of order p°m, where (p, m) = 1, then every
Sylow p-subgroup P of G has order p®.

Proof. We claim that [G: P] is prime to p. Now [G: P] =[G: N][N:P],
where N = N4(P), and so it suffices to prove that each of the factors is prime to
p. But [G : N] = r, the number of conjugates of p, so that [G: N] = 1 mod p,
while [N : P] = |N/P| is prime to p, by Lemma 4.11(i).

By Lagrange’s theorem, |P| = p*, where k < e, and so [G: P] = |G|/|P| =
p¢*m. Since [G : P] is prime to p, however, we must havek =e. W

Corollary 4.15. Let G be a finite group and let p be a prime. If p* divides |G|,
then G contains a subgroup of order p*.

Proof. If P is a Sylow p-subgroup of G, then p* divides | P|, and the result now
follows from Exercise 4.2. W

We have now seen how much of the converse of Lagrange’s theorem (if m
divides |G|, then G has a subgroup of order m) can be salvaged. If m is a prime
power, then G contains a subgroup of order m; if m has two distinct prime
factors, however, we have already seen an example (Theorem 3.7) in which G
has no subgroup of order m (namely, m = 6 and G = A4,, a group of order 12).

Since, for each prime p, any two Sylow p-subgroups of a finite group G are
isomorphic (they are even conjugate), we may list the Sylow subgroups of G,
one for each prime. It is plain that isomorphic groups G give the same list,
but the converse is false. For example, both S; and Z give the same list.

Here is another proof of Sylow’s theorem, due to Wielandt, that does not
use Cauchy’s theorem (and so it gives a third proof of Cauchy’s theorem).

Lemma 4.16. If p is a prime not dividing an integer m, then for all n > 1, the

binomial coefficient <pp:n> is not divisible by p.

Proof. Write the binomial coefficient as follows:

p"m(p"m — 1)---(p"m — i)---(p"m — p" + 1)
p"(p" =1 (p" =) (p"—p" + 1)

Since p is prime, each factor equal to p of the numerator (or of the denomina-
tor) arises from a factor of p"m — i (or of p" — i). If i = 0, then the multiplicity
of p in p"m and in p" are the same because pfm. If 1 < i < p", then i = p¥j,
where 0 < k < nand pfj. Now p* is the highest power of p dividing p" — i, for
p" —i=p"—p% =p*(p"* —j)and pfp" ¥ — j (because n — k > 0). A simi-
lar argument shows that the highest power of p dividing p"m — i is also p*.
Therefore, every factor of p upstairs is canceled by a factor of p downstairs,
and hence the binomial coefficient has no factor equal to p. W
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Theorem 4.17 (Wielandt’s Proof). If G is a finite group of order p"m, where
(p, m) = 1, then G has a subgroup of order p".

Proof. If X is the family of all subsets of G of cardinal p”, then | X]| is the
binomial coefficient in the lemma, and so pf|X|. Let G act on X by left
translation: if B is a subset of G with p" elements, then for each g € G, define

gB = {gb: b e B}.

Now p cannot divide the size of every orbit of X lest p|| X|; therefore, there is
some B € X with |O(B)| not divisible by p, where ((B) is the orbit of B. If Gy
is the stabilizer of B, then |G|/|Gg| = [G: Gg] = |O(B)| is prime to p. Hence,
|Ggl = p"m’ > p" (for some m’ dividing m). On the other hand, if b, € B and
g € G, then gb, € gB = B (definition of stabilizer); moreover, if g and h are
distinct elements of Gy, then gb, and hb, are distinct elements of B. There-
fore, |Gyl < |B| =p",and so |Gzl =p". W

The next technical result is useful.

Theorem 4.18 (Frattini Argument). Let K be a normal subgroup of a finite
group G. If P is a Sylow p-subgroup of K ( for some prime p), then

G = KNg(P).

Proof. If g € G, then gPg™* < gKg™' = K, because K < G. If follows that
gPg~! is a Sylow p-subgroup of K, and so there exists k € K with kPk™! =
gPg~'. Hence, P = (k"'g)P(k"*g)™", so that k™'g € Ng(P). The required fac-
torization is thus g = k(k™*g). W

EXERCISES

49. (i) Let X be a finite G-set, and let H < G act transitively on X. Then G = HG,
for each x € X.
(ii) Show that the Frattini argument follows from (i).

4.10. Let {P;: i e I} be a set of Sylow subgroups of a finite group G, one for each prime
divisor of |G|. Show that G is generated by U P;.

4.11. Let P < G be a Sylow subgroup. If Ng(P) < H < G, then H is equal to its own
normalizer; that is H = Ng(H).

4.12. Tf a finite group G has a unique Sylow p-subgroup for each prime divisor p of
|G|, then G is the direct product of its Sylow subgroups.

4.13. (i) Let G be a finite group and let P < G be a Sylow subgroup. If H < G, then
H A Pis a Sylow subgroup of H and HP/H is a Sylow subgroup of G/H.
(Hint. Compare orders.)
(ii) Let G be a finite group and let P < G be a Sylow subgroup. Give an example
of a (necessarily non-normal) subgroup H of G with Hn P not a Sylow
subgroup of H.
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4.14. Prove that a Sylow 2-subgroup of 45 has exactly 5 conjugates.

4.15. (i) Prove that a Sylow 2-subgroup of Ss is isomorphic to Dg.
(ii) Prove that Dg x Z, is isomorphic to a Sylow 2-subgroup of Sg.

4.16. If Q is a normal p-subgroup of a finite group G, then @ < P for every Sylow
p-subgroup P.

Definition. An n x nmatrix 4 over a commutative ring R is unitriangular if it
has O’s below the diagonal and I’s on the diagonal. The set of all uni-
triangular 3 x 3 matrices over Z, is denoted by UT(3, Z,).

4.17. (i) Show that |GL(3, Z,)| = (p* — 1)(p*> — P)(P* — P*).
(i) If p is a prime, then UT(3, Z,) is a Sylow p-subgroup of GL(3, Z,)).
(iii) Show that the center of UT(3, Z,) consists of all matrices of the form

1 0 x
010
0 01

4.18. Show that a finite group G can have three Sylow p-subgroups A, B, and C such
that AnB=1and AnC # 1. (Hint. Take G = S; x S3.)

4.19. Let |G| = p"m, where pfm. If s < n and r, is the number of subgroups of G of
order p*, then r, = 1 mod p.

420. (i) Let c=(123 4 5), let P={0) <S5, and let N = N5 (P). Show that
IN|=20and N = {o,a), wherea =(2 3 5 4).
(ii) If A is the group (under composition),

A={p:Zs>Zs: p(x)=0ax + B,o, feZs, a # 0},

then N (P)= A. (Hint. Show that 4 = (s,t), where s:x — x + 1, and
t:x > 2x.)

Groups of Small Order

We illustrate the power of the Sylow theorems by classifying the groups of
small order.

Theorem 4.19. If p is a prime, then every group G of order 2p is either cyclic or
dihedral.

Proof. If p = 2, then |G| = 4, and the result is Exercise 2.12. If p is an odd
prime, then Cauchy’s theorem shows that G contains an element s of order p
and an element ¢ of order 2. If H = {s), then H has index 2 in G, and so H <
G. Therefore, tst = s’ for some i. Now s = t2st? = t(tst)t = ts't = s*’; hence,
i2 = 1 mod p and, because p is prime, Euclid’s lemma gives i = + 1 mod p.
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Thus, either tst = s or tst = s™'. In the first case, s and t commute, G is
abelian, and Exercises 4.12 and 2.62(ii) give G = Z, x Z, = Z,,,; in the sec-
ond case, G=D,,. N

We now generalize this result by replacing 2 by q.

Theorem 4.20. Let |G| = pq, where p > q are primes. Then either G is cyclic or
G = {a, b, where

P=1, al =1, aba™' = b™,

and m? = 1 mod p but m % 1 mod p. If q[p — 1, then the second case cannot
occur.

Proof. By Cauchy’s theorem, G contains an element b of order p;let S = (b).
Since S has order p, it has index q. It follows from Exercise 3.33 that S < G.

Cauchy’s theorem shows that G contains an element a of order g; let
T = <a). Now T is a Sylow g-subgroup of G, so that the number c of its
conjugates is 1 + kq for some k > 0. As above, eitherc =lorc=p.Ifc =1,
then T <Gand G = S x T (by Exercise 4.12),andso G = Z, x Z, = Z,,, by
Exercise 2.62(ii). In case ¢ = kq + 1 = p, then q|p — 1, and T is not a normal
subgroup of G. Since S < G, aba™! = b™ for some m; furthermore, we may
assume that m # 1 mod p lest we return to the abelian case. The reader may
prove, by induction on j, that a’ba™/ = b™. In particular, if j = g, then m? =
Imodp. R

Corollary 4.21. If p > q are primes, then every group G of order pq contains a
normal subgroup of order p. Moreover, if q does not divide p — 1, then G must
be cyclic.

For example, the composite numbers n < 100 for which every group of
order n is cyclic are:

15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95.

Definition. The quaternions is a group Q = {a, b) of order 8 with a* =1,
b? =a% and bab™! = a™.

We continue describing groups of small order.
Theorem 4.22. Q and Dy are the only nonabelian groups of order 8.
Proof. A nonabelian group G of order 8 has no element of order 8 (lest it be
cyclic), and not every nonidentity element has order 2 (Exercise 1.26); thus, G

has an element a of order 4. Now <a) < G, for it has index 2, and G/<a) = Z,.
Ifbe G and b ¢ a5, then b € (a) (Exercise 2.16). If b> = a or b*> = a’, then
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b has order 8, a contradiction; therefore, either
b? =a® or b2=1
Furthermore, bab™* € {a), because {a) is normal, so that
bab*=a or bab”'=a’

(these are the only possibilities because a and bab~! have the same order).
The first case is ruled out, for G = {a, b) and G is abelian if a and b commute.
The following case remain:

(i) a* = 1,b* = a* and bab™" = a*; and
(i) a* = 1,b* = 1,and bab™" = a*.

Since a® = a7}, (i) describes Q and (ii) describes Dg. W

Lemma 4.23. If G has order 12 and G % A,, then G contains an element of
order 6; moreover, G has a normal Sylow 3-subgroup, hence has exactly two
elements of order 3.

Proof. If P is a Sylow 3-subgroup of G, then |P| = 3 and so P = <{b) for some
b of order 3. Since [G: P] = 4, there is a homomorphism ¥: G — S, whose
kernel K is a subgroup of P;as |P| = 3,either K = 1 or K = P.If K = 1,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>